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ABSTRACT

Several approaches used for inpainting of images take advan-
tage of sparse representations. Some of these seek to learn
a dictionary that will adapt the sparse representation to the
available data. A further refinement is to adapt the learning
process to the task itself. In this paper, we formulate a task-
driven approach to inpainting as an optimization problem, and
derive an algorithm for solving it. We demonstrate via numer-
ical experiments that a purely task-driven approach gives su-
perior results to other dictionary-learning approaches.

Index Terms— Sparse representations, dictionary learn-
ing, inpainting

1. INTRODUCTION

We consider the application of sparse representations and dic-
tionary learning methods to imaging problems that can be
posed in terms of filling in unknown information, such as im-
age inpainting and demosaicing. Due to space constraints, we
will focus on inpainting, where missing or corrupted portions
of an image are to be estimated. The general framework for
this type of approach (see, e.g., [1]) consists of (i) estima-
tion of missing pixels for individual image patches, and (ii)
a mechanism for propagating these estimates into the interior
of a missing region that is too large to be estimated using a
single patch. Since these two components are largely inde-
pendent, we will develop methods and compare performance
purely on the patch-level estimation process; a complete in-
painting algorithm would combine these methods with a stan-
dard patch-propagation technique.

Given a dictionary D, an image patch y, and projections
P and Q = I − P onto the known and missing regions of y
respectively, the standard sparse-representation based recon-
struction of the missing region of y is QDx, where x is the
minimizer of

min
x
λ‖x‖1 + 1

2‖P (Dx− y)‖22. (1)
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A simple approach is to choose a different D for each target
patch y, by searching the known region of the image being in-
painted for the patches yk for which the distance between Py
and Pyk is sufficiently small. These “nearest-neighbor dictio-
naries” have been shown to provide good performance [1, 2].
For computational and other reasons, however, it would be
desirable to construct a single dictionary D for use across the
entire set of target patches (e.g. as in [3]).

Learning of the dictionary can be formulated as follows.
Let each column of a matrix Ytrain contain one element of
training dataset; most commonly, these are image patches
that do not have any missing pixels. We then seek a dic-
tionary D, typically overcomplete, that approximates the
columns of Ytrain in terms of sparse coefficient vectors that
form the columns of a matrix X:

min
X,D

λ‖X‖1 + ξ
2‖X‖

2
2 + 1

2‖DX − Ytrain‖22,

subject to each ‖di‖2 ≤ 1, (2)

where di is the ith column of D. We have used an elastic-net
model [4], though in many cases ξ = 0 is used. The constraint
on the columns of D is used to prevent the degeneracy of ob-
taining a lower energy by replacing (X,D) with (αX, 1

αD)
for α � 1. The dictionary D is learned based on its ability
to reconstruct the training data Ytrain. We refer to this stan-
dard approach [5, 6, 7] as Reconstruction Dictionary Learning
(RDL). Once the RDL dictionary D is learned, the missing
data can be estimated as Q(DX), where X is the minimizer
of

min
X

λ‖X‖1 + ξ
2‖X‖

2 + 1
2‖P (DX − Ytest)‖22, (3)

and P and Q are the projections onto the known and missing
portions of Ytest.

The RDL process does not incorporate any knowledge of
the task to be performed. While it is possible to apply a dictio-
nary learned via RDL to a task other than reconstruction (see
e.g. [8, 9]), it is reasonable to expect that improved perfor-
mance would be obtained by adapting the dictionary learning
to the task. A natural and relatively easy way of achieving
this is to augment the objective function of (2) with a term
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that penalizes the error in estimating the missing data:

min
X,D1,D2

λ‖X‖1 + ξ
2‖X‖

2 + 1
2‖P (D1X − Ytrain)‖22

+ µ
2 ‖Q(D2X − Ytrain)‖22 + γ

2 ‖D2‖22,
subject to each ‖(dj)i‖2 ≤ 1, (4)

where we have added a second dictionary to allow the model
greater freedom in learning to fill in missing information, and
a term regularizingD2 to mitigate over-fitting. We refer to this
as Task-Augmented Dictionary Learning (TADL). Filling in
missing information then proceeds as in RDL (3). A variety of
methods based on this framework have been considered [10,
11, 12, 13, 14], primarily with D1 = D2.

However, TADL compromises the ability to fill in missing
data by devoting some of the energy in (4) to reconstruction
of the known portions of the training data. While this seems
desirable, it is in fact not of direct importance: we seek the
dictionary that fills in missing information as well as possible,
regardless of how well the known portions are reconstructed.
Instead, we propose to use Task-Driven Dictionary Learning
(TDDL). The sparse representation of the known portions will
still be used as in RDL and TADL. The difference is that we
remove the quality of this reconstruction entirely from the ob-
jective function, giving the following optimization problem:

min
D1,D2

1
2‖Q(D2X

∗ − Ytrain)‖22 + γ
2 ‖D2‖22, subject to

X∗ = arg min
X

λ‖X‖1 + ξ
2‖X‖

2
2 + 1

2‖P (D1X − Ytrain)‖22. (5)

With TDDL, the objective function only seeks to minimize
the error in estimation of the missing data; the sparse rep-
resentation of the known portions is defined via a constraint
rather than an additional term in the objective function. While
(5) no longer has the scale degeneracy in D1 or D2, we add
a penalty on the size of D2 to guard against overfitting of
the training set. We also use an elastic-net model to provide
greater regularity, which helps in solving the very challenging
problem (5). Once D1 and D2 are learned, filling in the miss-
ing data proceeds similarly to RDL and TADL, except here
X is obtained by solving (3) using D = D1, and then the
missing data is Q(D2X).

In Sec. 2 we present our algorithm for solving (5). In
Sec. 3 we present numerical experiments that compare the
inpainting performance of RDL, TADL, and TDDL.

1.1. Relation to Prior Work

The general TDDL framework [15, 16, 17] is not new, but has
received far less attention in the literature than the simpler
dictionary learning frameworks. Of these, the most closely
related to our work is that of Mairal et al. [17], where a prob-
abilistic version of (5) is solved using a stochastic gradient
descent algorithm. Part of the contribution of this work is to
show that a deterministic approach can be used, which results
in an algorithm that is more readily parallelizable.

2. TASK-DRIVEN DICTIONARY LEARNING
ALGORITHM

In this section we describe our algorithm for solving (5). Let
H = H(D1, D2) be the functional that is minimized in (5).
We let f = f(D1) be the function defined implicitly in (5)
(letting Y = Ytrain here and henceforth):

f(D1) = arg min
X

λ‖X‖1 + ξ
2‖X‖

2
2 + 1

2‖P (D1X − Y )‖22.

(6)
Thus we can regard (5) as the following unconstrained opti-
mization problem:

min
D1,D2

1
2‖Q(D2f(D1)− Y )‖22 + γ

2 ‖D2‖22. (7)

Since the part of the data that is known or missing can
vary from column to column of Y , it is convenient to de-
compose our problem into pieces where the known portion
of each column is the same. Suppose there are C distinct con-
figurations, and let Pc, Qc be the corresponding projections
for each c ∈ {1, . . . , C}. (These can be expressed as diagonal
matrices, while P and Q can only be so expressed if their ar-
guments are vectorized.) Let Ωc be the set of column indices
of Y having the cth configuration, and let Yc = Y |Ωc

denote
the corresponding columns of Y . Similarly define fc(D) =
(f(D))c. Then we have:

‖P (D1X − Y )‖22 =

C∑
c=1

‖PcD1Xc − PcYc‖22, (8)

‖Q(D2fc(D)− Y )‖22 =

C∑
c=1

‖QcD2fc(D)−QcYc‖22. (9)

The minimization process consists of alternating between
updating D1 and D2 using gradient descent. During the iter-
ations, f(D1) is computed using a version of the alternating
directions, method of multipliers (ADMM) algorithm suitable
for elastic net regularization [18].

Because H is a quadratic function of D2, ∇D2
H is

straightforward to calculate. The step size b is computed as

arg min
b

H(D1, D2 − b∇D2H(D1, D2)), (10)

which can be written down explicitly (see Algorithm 2).
It is more complicated to compute∇D1

H because f is not
differentiable in general. What is required is that the support
and sign of fij(D) is stable under perturbations. To this end,
we adopt the same assumptions as in [17, Appendix], which
amount to a restriction on the domain of f (and hence H).
Under such assumptions,

∇D1H =

C∑
c=1

∑
i,j

[
DT

2 Q
T
c

(
QcD2fc −QcYc

)]
ij
∇[fc]ij ,

(11)
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noting that the gradient of the scalar [fc(D)]ij with respect to
D is a matrix. In order to compute ∇f , we use the first order
optimality condition for fc(D1):

0 ∈
[
PcD

T
1 (PcD1fc − PcYc)

]
ij

+ λ∂| · |([fc]ij) + ξ[fc]ij .

(12)
The assumption that the support of f(D1) is stable means
that ∇[fc]ij = 0 if [fc]ij = 0. Then we can differentiate
(12) and compute ∇[fc]ij on the support of fc. The process
of computing∇D1

H is described in Algorithm 1.

Algorithm 1 Computing∇D1
H

Input: D1, D2, f = f(D1), {Pc}, {Qc}, Y , and ξ.
for j = 1, . . . , N , where Y has N columns do
• Let c be the configuration of f j . Let DP = PcD1,
DQ = QcD2, Y jP = PcY

j and Y jQ = QcY
j .

• Λj = supp(f j), f̂ j = f j |Λj , D̂P = DP |Λj (column-
wise), D̂Q = DQ|Λj

(column-wise).

• (βj)T =
(
D̂Qf̂

j − Y jQ
)T
D̂Q

(
D̂T
P D̂P + ξI

)−1
.

• βj∗ =

{
βj on Λj ,

0 otherwise ,
a column vector.

• ∇D1
Hj = (Y jP −DP f

j)βj∗ −DP (βj∗)
T (f j)T .

end for
∇D1H =

∑N
j=1∇D1H

j .

After ∇D1
H is computed, D1 is updated in the descent

direction −∇D1
H with a pre-chosen step size a. The process

of minimizing H is summarized in Algorithm 2.

Algorithm 2 Task-Driven Dictionary Learning (TDDL)
Input: D0, {Pc}, {Qc}, {Yc}, λ, ξ, γ, niter, and a.
Initialization: D1 ← D0, D2 ← D0.
for k = 1, . . . , niter do
• Compute f(D1)
for c = 1, . . . , C do

fc = arg min
X

1
2‖PcD1X − PcYc‖22 + λ‖X‖1 + ξ

2‖X‖
2
2

end for
• Compute∇D1

H ← Algorithm 1.

• Update D1 ← D1 − a∇D1
H .

• Update D2 ← D2 − b∇D2
H , where

∇D2
H =

C∑
c=1

QTc (QcD2fc −QcYc)fTc + γD2,

b =
γ〈D2,∇D2

H〉+
∑C

c=1〈Qc∇D2
Hfc,QcD2fc−QcYc〉

γ‖D2‖22+
∑C

c=1 ‖Qc∇D2
Hfc‖22

.

end for

The solution of (4), which we will use for comparison, is
computed by alternately updatingX ,D1 andD2. An ADMM
algorithm is used to solve for X with given D1 and D2, and
the two dictionaries are updated using gradient descent and
optimal step sizes. After each update, the columns of D1 and
D2 are rescaled such that the norms do not exceed 1.

3. NUMERICAL EXPERIMENTS

3.1. Single configuration, patch-level inpainting

Here we implement TDDL on a 228 × 252 grayscale zebra
image (Fig. 1(a)), for a patch-level inpainting task. (All zebra
images are from the ImageNet database [19].) The testing data
Ytest consists of four sets of tiled 8 × 8 patches with relative
offsets of (0, 0), (0, 4), (4, 0), and (4, 4) pixels. The center 4×
4 square of each patch is the missing region. The inpainting
mask of one set of the tiled patches is shown in Fig. 1(b). The
projections P and Q correspond to the known region of the
patch and the center missing region respectively. The goal is
to inpaint the center missing region of each patch.

(a) Zebra image (b) One set of corrupted patches

Fig. 1. Inpainting test where the missing region of all patches
is in the same location within the patch.

We randomly choose 16,000 8× 8 patches from 40 zebra
images as the training data Ytrain for RDL and TDDL with
C = 1, and learn dictionaries of size 64×256. The parameters
for TDDL are chosen as λ = 0.01, ξ = 0.1, γ = 3, niter =
300 and a = 2 × 10−5, while for RDL we use λ = 10−4

and ξ = 0. The initial dictionary is one previously learned
from 107 patches from separate zebra images. With a single
configuration, the dictionaries D1 and D2 can be considered
the complementary portions of a single dictionary D.

After learning the dictionary D, we compute the sparse
coefficients using the known region of the patches:

X̂ = arg min
X

1
2‖DPX−PYtest‖22 +λ‖X‖1 + ξ

2‖X‖
2
2. (13)

Then DQX̂ gives us the reconstruction of the missing region.
For TDDL, λ and ξ used in (13) are the same as in the learning
process, while the best performance for RDL was obtained
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with λ = 0.01 and ξ = 0. The SNR and SSIM [20] of the
missing region are compared with the ground truth as a mea-
sure of inpainting performance (see Table 1). We find TDDL
gives substantially better performance. Moreover, simply us-
ing the initial dictionary in (13) gives roughly the same per-
formance as RDL, so unlike TDDL, RDL is not providing any
improvement in quality. (We do not include TADL for this test
because in the single configuration case, TADL reduces to an
RDL model with parts of the dictionary and data rescaled.)

We also compute the performance for reconstruction (with
λ = 0.1) using the Nearest Neighbor Dictionaries (NND) dis-
cussed in the Introduction. This method performs relatively
poorly in this particular test, but this is not surprising, since
in this case the nearest-neighbor search is performed on a set
of training images rather than the image to be inpainted it-
self, and thus the set of exemplars included in the dictionary
is expected to be of reduced efficacy [21].

TDDL RDL NND
SNR (dB) 8.65 6.59 1.44

SSIM 0.843 0.816 0.581

Table 1. Single configuration, patch-level inpainting. SNR,
and SSIM [20] are computed over the inpainting region only.

3.2. Multi-configuration inpainting

We test a more general inpainting task to demonstrate TDDL
with many configurations. The 512 × 768 color test image
(“kodim23” from [22]) and the corresponding inpainting
masks are displayed in Figs. 2(a) and 2(b) respectively.

We take every 8×8 patch from the original image, and let
the ones containing any missing pixels (about 1.5 × 104) be
the testing data Ytest, and the others (about 3.6× 105) be the
training data Ytrain. Since the color image consists of three
channels, each patch corresponds to a 192-dimensional vec-
tor. Among all the testing data, there are in total 3,022 dis-
tinctive configurations of the missing region on patch (i.e.,
C = 3022). Let {Pc , Qc}3022

c=1 denote these configurations.
We randomly assign the patches in Ytrain to the configura-
tions, such that the frequency of each configuration in Ytrain

is the same as in Ytest.
Then we implement the TDDL algorithm with λ = 10−3,

ξ = 10−4, γ = 4, niter = 220 and a = 5 × 10−7. The initial
D0 (192 × 256) was set to the dictionary learned on 2 × 107

natural image patches provided online by the authors of [23].
For TADL, we use the same D0 and Ytrain, with λ = µ =

10−6, ξ = 0.1, γ = 4 and niter = 800, for its best perfor-
mance. RDL is learned with λ = 0.01 and the corresponding
reconstruction is performed with λ = 7× 10−4 and ξ = 0.

The reconstructions using both TDDL and TADL are
computed using the same λ and ξ as in their learning pro-
cesses. The reconstructed images are shown in Figs. 2(c)
and 2(d), and inpainting performance, including reconstruc-
tion using NND, is summarized in Table 2. Note that the

(a) Original (b) Mask

(c) Inpainted TADL (d) Inpainted TDDL

Fig. 2. Multi-configuration inpainting results. The missing re-
gion of each is simply its intersection with the mask. Traces
of the mask are still visible in the TADL result, but are far less
evident in the TDDL result. (For a proper comparison, images
should be zoomed in the electronic version of this document.)

TDDL performance, using a single dictionary for all patches,
is competitive with that of NND, which is able to adaptively
choose the dictionary for each patch.

TDDL TADL RDL NND
SNR (dB) 18.47 17.01 16.00 18.82

SSIM 0.920 0.880 0.886 0.927
Color SSIM 0.950 0.937 0.939 0.949

Table 2. Multi-configuration inpainting results. SNR,
SSIM [20], and color SSIM [24] are computed over the in-
painting region only.

4. CONCLUSION

We have developed a method for addressing problems such
as image inpainting via dictionary learning based on an opti-
mization problem that directly represents the actual problem
of interest. This problem is solved via a deterministic algo-
rithm that is more readily parallelizable than a prior stochastic
gradient descent algorithm for the same problem class. It is
demonstrated that the proposed framework can be used to
learn a single dictionary pair that can effectively estimate
different configurations of known and missing elements of
the problem data. This is vital for a practical application to
inpainting problems with a general inpainting region mask.
Inpainting performance is superior to dictionary learning
methods that are not purely task-driven, and competitive
with nearest-neighbor dictionaries that determine a separate
dictionary for each patch.
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