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ABSTRACT

Sparsity has been one of the major drives in signal processing
in the last decade. Structured sparsity has also lately emerged
as a way to enrich signal priors towards more meaningful
and accurate representations. In this paper we propose a new
structured sparsity signal model that allows for the decom-
position of signals into structured molecules. We define the
molecules to be linear combinations of atoms in a dictionary
and we create a decomposition scheme that allows for their
identification in noisy signals while being robust to small er-
rors in the internal molecule structure. We show the effective-
ness of our scheme for recovering and identifying corrupted
or occluded signals on both synthetic and real data.

Index Terms— structure, molecules, coefficients, spar-
sity

1. INTRODUCTION

Sparsity has been introduced in signal processing as a way
to obtain compact representations of signals with few signif-
icant components chosen in (overcomplete) dictionaries [1].
The pioneer work of Olshausen and Field [2] also suggested
that sparsity could be the mechanism employed by V1 for
achieving efficient representations of natural images. Vast re-
search efforts have been deployed to design algorithms that
compute sparse decompositions of signals, such as the l0-
regularization problem [1, 3] and its convex l1-relaxation, the
Lasso [4, 5].

Sparsity is however not always a sufficient prior; the
dependencies among the atoms in the signal representation
should be also taken into account in order to define effective
signal models. Group sparsity was introduced as a way to
enforce a pre-specified structure in the decomposition: the
atoms of the dictionary are partitioned into groups and the
elements of each group are encouraged to appear simultane-
ously in the signal decomposition by an l1 - l2 regularization
term [6]. Moving a step further, the atoms can also obey a
predefined hierarchical structure, imposed by suitably chosen

Thanks to FNS agency for funding.

sets of groups [7]. Several approaches have also considered
general overlapping patterns by either carefully designing the
groups [8, 9] or by suitably manipulating the overlapping
parts among them [10]. Finally, there are also works that
describe the statistical dependencies between the atoms in a
dictionary with graphical models. For example, Markov Ran-
dom Fiels (MRFs) are employed for modeling the underlying
dependencies in [11, 12, 13] . The resulting structure model
is essentially a probability distribution function that com-
pares the different possible supports of atoms in the signal
representation.

The above methods identify structures in terms of their
support and, as a result, they cannot distinguish among pat-
terns with the same support but different energy distributions
among components. This can however be important for signal
recognition for example. We propose here a new signal model
that exactly targets a better modeling of higher level struc-
tures. Our model assumes that signals are made of molecules,
which are combinations of atoms with a specific energy dis-
tribution. Molecules are able to model more complex signal
patterns than common group sparsity priors while keeping a
simple form with linear combinations of atoms. We also in-
troduce a new decomposition scheme that allows for the iden-
tification of molecule structures in signals. Its novelty resides
mainly in the explicit inclusion of an error matrix that allows
for small errors in the structure of molecules. Our scheme
manages to perform high level decomposition of signals while
staying robust to small deviations from the predefined struc-
tures. We provide experimental results on both synthetic and
real signals that show the effectiveness of our scheme for re-
covering corrupted or occluded structures in signals.

2. PROBLEM FORMULATION

We consider a new structured signal model based on molecules,
which are sets of atoms with a given energy distribution, i.e.
the relative energy of each atom in each molecule instance is
the same. This can be realized by defining molecule proto-
types as linear combinations of atoms, while each molecule
instance is any multiple of one prototype. Given a possibly
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overcomplete dictionaryD ∈ RN×K , the molecule set is thus
expressed as a matrix C ∈ RK×M , where each column speci-
fies the energy distribution among atoms in a given molecule,
i.e., the molecule matrix is defined as C = [c̄1 c̄2 · · · c̄M ]
where c̄i ∈ RK×1. The support of the molecule defined by c̄i
is si = {j ∈ [1, N ], cij > 0} and the corresponding molecule
is mi = Dc̄i. We assume that each mi is normalized. A sig-
nal x that is a combination of molecules can then be written
as x = DCa where D =

[
d̄1 d̄2 · · · d̄K

]
, d̄i ∈ RN×1, is the

dictionary of elementary atoms and a is a positive coefficient
vector.

The matrixC serves as a rich prior about the signal. How-
ever, this comes at the expense of reduced robustness to noise
since the traditional signal decomposition techniques using
the dictionary of molecules may lead to inaccurate represen-
tations in case of small deviations from the predefined en-
ergy distribution in the noisy signal. Hence we propose a new
decomposition technique that incorporates an error matrix to
capture errors inside the structure of molecules. We denote
this error matrix as E ∈ RK×M .

Finally, given a signal x ∈ <N , its sparse decomposition
into molecules, namely a ∈ RM , as well as the related error
matrix E can be found by solving the following optimization
scheme:

{Ê, â} = arg min
a,E

{||x−D ∗ (C + E) ∗ a||2 + λ1 ∗ ||a||1

+ λ2 ∗ ||W. ∗ E||1} (1)

subject to ai ≥ 0,∀i ∈ [1,M ]. The optimization in Eq. (1)
contains the unstructured error term expressed by ||x − D ∗
(C + E) ∗ a||2, that measures which part of the signal can-
not fit into the structure model. The remaining two terms in
Eq. (1) express sparsity and energy constraints on a and E
respectively. The first one enforces sparse decompositions
of signals in molecules. The latter is a constraint on the er-
ror E expressed by the term ||W. ∗ E||1. The weight matrix
W is a mask that ensures that the errors appear mostly on
atoms belonging to the support of molecules. This is achieved
by setting to one the entries of W in the support of each
molecule and to arbitrary high values the other entries. This
constraint enforces the decomposition to stay close to the sig-
nal model by preventing random atoms to appear in the sig-
nal. Finally the regularization parameters λ1, λ2 control the
relative weight of each constraint and depend on the target
application.

3. ALGORITHM

The cost function in the optimization problem given in Eq. (1)
is not convex on both (a,E). However, considering that a is
fixed, the optimization over E is convex since the involved l2
and l1 norms are convex functions of affine maps on E. Sim-
ilarly, when E is fixed, the optimization over a is convex too.
Therefore, we can use an alternate minimization procedure to

solve for both (a,E). Although alternate optimization cannot
guarantee the convergence to a global minimum, it usually
converges to a good solution in practice.

To be more specific, we firstly set E to zero and solve the
optimization in Eq. (1) only for a. This first step is actually
equivalent to finding a sparse decomposition of the signal in
the molecule dictionary directly. The solution serves as an
initialization for a and is denoted as a0. Then, by fixing a
to a0, we solve Eq. (1) for E. Its solution E0 is used as the
value of E for the next step. After completing this initializa-
tion procedure, we alternate over the optimization for a and
E until no significant changes occur on any of the minimiza-
tion problems. In this alternating phase, for the optimization
over a, we employ the method of reweighted l1-minimization
described in [14] as it leads to a more effective approximation
of the desired l0 norm. All the convex minimization subprob-
lems involved in the above procedure are solved with the Se-
DuMi interior point solver in CVX [15]. Their computational
complexity depends on the size of the used dictionary as well
as the number of non-zero atoms in the molecules. The pseu-
docode of the proposed scheme is shown in Figure 3.

Algorithm 1 Structured sparse decomposition with
molecules (A0)
Input: x,D,C,W, λ1, λ2, ε

Initialization
1: a0 = arg mina{||x−D ∗ C ∗ a||2 + λ1 ∗ ||a||1}, a ≥ 0
2: E0 = arg minE{||x−D∗(C+E)∗a||2+λ2∗||W.∗E||1}
3: ap = a0
4: Ep = E0

Alternate optimization
5: while true do
6: WA = 1./ap
7: â = arg mina{||x−D∗(C+Ep)∗a||2+λ1∗||WA.∗
a||1}, a ≥ 0

8: Ê = arg minE{||x−D ∗ (C+E)∗ â||2 +λ2 ∗ ||W.∗
E||1}

9: if (||â− ap||+ ||Ê − Ep|| < ε) then
10: return
11: else
12: ap = â

13: Ep = Ê
14: end if
15: end while
Output: â, Ê

4. RESULTS

The proposed scheme (A0) is a method to decompose sig-
nals into higher level patterns, the molecules. Its goal is to
achieve a simple decomposition algorithm that imposes a rich
but flexible prior on the signals. To prove its effectiveness we
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Fig. 1. The denoising result for synthetic data and different noise levels. In (a) we can see the SNR of the different signal
reconstructions while in (b) we have the error in the recovery of molecule coefficients. In (c) we plot the FDR for all the
schemes.

compare it against the l1-l2 group norm (the algorithm is de-
noted as A12 in this paper) [10], a well known approach for
incorporating prior information about groups in sparse cod-
ing. Each group gi ∈ G is defined according to the support of
the corresponding molecule mi and the equivalent optimiza-
tion problem is:

b̂ = arg min
b
{||x−D ∗ b||2 + λ

∑
gi∈G
||bgi ||} (2)

The vector of coefficients b is the signal decomposition in the
atom level and bgi is its restriction on gi. The decomposition â
in groups ( or equivalently molecules in our case) is found as
the l2 norm of the coefficients in each group i.e., âi = ||b̂gi ||.

Since molecules are linear combinations of atoms, an
alternative option is to introduce them directly into the dic-
tionary and perform sparse coding with the dictionary of
molecules. This approach is similar to the sparse coding
step in [16]. In the following, we also compare our scheme
with sparse coding with l1 regularization on the molecule
dictionary (we denote this algorithm as Am), i.e., that is the
outcome of:

â = arg min
a
{||x−Dm ∗ a||2 + λ||a||1} (3)

where Dm = DC is the molecule dictionary.
The performance of the algorithms is compared using var-

ious measures. To quantify the performance in terms of the
signal recovery we compute both the reconstruction error of
the signal approximation, i.e., ||x − x̂|| where x̂ is the signal
reconstruction based on â or b̂ , as well as the error in the
recovery of molecule coefficients (REM) defined as ||a− â||.

Moreover, we are also interested in the accuracy of the
molecule detection. Therefore, we also provide results for
the false discovery rate (FDR), which is the percentage of the
detected molecules that is incorrect. We finally note that the
true positive rate is almost always equal to one.

4.1. Denoising on Synthetic Data

Firstly, we have investigated the performance of our scheme
for denoising synthetic image data. We have created a dic-
tionary of 30 molecules by randomly combining 5 atoms of a
DCT dictionary. Each testing signal is then composed of one
molecule and some Gaussian noise. The average results for
30 testing signals across different levels of noise are shown in
Figure 1.

From the bar plots, we can verify that the inclusion of the
molecule structure in the decomposition certainly improves
the denoising performance. The SNR of the recovered sig-
nals as well as the recovered energy in the molecule level
are always better with our scheme A0. The detection of the
molecules is also more accurate as it is shown from the neg-
ligible FDR. This is happening because the explicit inclusion
of the error matrix in the decomposition allows for flexibility
that compensates the effect of noise. The high values for the
REM in A12 are due to the lack of internal structure in the
groups. As a result, A12 is not able to distinguish between
the two different levels of energy: the one of the atoms inside
a molecule and the one at the molecule level; the molecule
coefficients cannot be recovered accurately.

4.2. Occlusion on Synthetic data

We have further investigated the performance of our scheme
in case of occlusion, i.e., in case existing structures in signals
are incomplete. We have created a molecule dictionary with
highly overlapping molecules. To be more specific, we have
used a dictionary of 30 molecules divided into 10 groups. In
each group, molecules have 4 out of 11 atoms in common
with coefficients that result in a correlation equal to 60% for
the molecules in the group.

Each testing signal is then composed of one molecule
missing 50% of its uncommon part plus Gaussian noise.
The results for different levels of noise are shown in Figure
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Fig. 2. The results for the case of occluded synthetic data across different noise levels. The performance of A0 is significantly
better than the other schemes as it detects more accurately the correct molecules.

2. Again, our scheme achieves better reconstruction perfor-
mance and better structure detection. It is important to notice
the poor performance of A12 in terms of reconstruction due to
the inability of the l1-l2 group norm to complete missing parts
of structures; as a result the occluded atoms cannot be recov-
ered. At the same time, the molecule dictionary gets easily
confused by the common support of the molecules resulting
in high FDR rates and high REM due to the distribution of
the signal energy over the wrongly detected molecules.

4.3. Occlusion on MNIST

We have also tried our scheme with data from the MNIST
dataset [17], downsampled to 14 × 14 images. For the atom
dictionary we have used an overcomplete dictionary of 323
Gaussian, anisotropic atoms with a mother function φ(x, y) =
A exp(−(x/4)2 − y2). In order to create our molecule dic-
tionary and the structure matrix C, we have randomly chosen
one instance of each digit and approximated it using l1 sparse
coding.

For testing the performance under occlusion, we have
created a testing set with 30 signals, each consisting of one
molecule missing a specific percentage of its structure. The
results for different missing percentages are shown in Figure
3. In this case, the difference between A0 and Am is not very
significant in terms of the reconstruction of signals. This is
due to the low coherence of the molecule dictionary in com-
bination with the absence of any additional noise. However,
we have benefits in the molecule detection performance as it
is obvious from the zero FDR for A0 in plot (c) of Figure 3.

5. CONCLUSIONS

In this paper we have presented a new structured signal model
based on the notion of molecules, which are defined as linear
combinations of atoms in a dictionary. We have also intro-
duced a sparse decomposition scheme with structure flexibil-
ity provided by the explicit inclusion of constrained errors in
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Fig. 3. The SNR, REM and FDR for occlusion on MNIST
digits.

molecules. We have tested our scheme on both synthetic and
real signals and proved that it offers significant benefits to the
reconstruction of noisy or occluded signals especially in the
case of highly correlated molecules. The extension to more
severe deformations of structures as well as the learning of
structures from data remain as future work.
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