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ABSTRACT

Sparse dictionary learning has attracted enormous interest in
image processing and data representation in recent years. To
improve the performance of dictionary learning, we propose
an efficient block-structured incoherent K-SVD algorithm for
the sparse representation of signals. Without relying on any
prior knowledge of the group structure for the input data,
we develop a two-stage agglomerative hierarchical cluster-
ing method for block sparse representations. This clustering
method adaptively identifies the underlying block structure of
the dictionary under the restricted conditions of both a max-
imal block size and a minimal distance between the blocks.
Furthermore, to meet the constraints of both the upper bound
and the lower bound of the mutual coherence of dictionary
atoms, we introduce a regularization term for the objective
function to suppress the block coherence of the overcomplete
dictionary. The experiments on synthetic data and real images
demonstrate that the proposed algorithm has lower represen-
tation error, higher visual quality and better reconstructed re-
sults than other state-of-the-art methods.

Index Terms— Dictionary learning, sparse coding, block
sparsity, sparse representation

1. INTRODUCTION

In the past decade, the synthesis model has been a very pop-
ular approach for sparse representations [1, 2]. Such a model
assumes that a signal X ∈ Rd can be composed of a linear
combination of a few atoms from a given dictionary Dd×K .
The dictionary D satisfies ∥X−DA∥p 6 ε, where ε is an
arbitrarily small positive number. The vector A ∈ RK de-
notes the sparse representation coefficients of the signal X.
Indeed, this general problem has been shown to be NP-hard.
So far, the development of many sub-optimal solutions of the
above model has concentrated on estimating the sparse repre-
sentation A from a corrupted signal X (or sparse coding) and
inferring the dictionary D from signal examples.
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The group sparse coding [3] and block-sparse signals [4]
have become the focus of research in the fields of sparse rep-
resentations these years. Very recently, the optimized K-SVD
method [5] has appeared, which adopts the sparse agglomera-
tive clustering (SAC) approach to identify the block structure
of atoms in the dictionary. However, the major drawback-
s of the SAC approach are its susceptibility to errors in the
initial steps that propagate all the way to its final output. Al-
though the constraints of both the upper bound [6] and the
lower bound [7] of the mutual coherence of dictionary atoms
were pointed out [8], the coherence of the dictionary trained
by K-SVD [1] or its variant [5, 9] has received no attention
in the reported literatures. In this paper, we focus on the dic-
tionary learning of the synthesis model and propose a block-
structured incoherent K-SVD (BSIK-SVD) algorithm for the
performance improvement of sparse representations of signal-
s and images. The main contributions of our work can be sum-
marized as follows: 1) the two-stage agglomerative hierarchi-
cal clustering technique is employed to identify the inherent
block structures of the dictionary, and 2) the proposed BSIK-
SVD framework incorporates a regularization constraint reg-
ulating the intra-block coherence of dictionary atoms. The
purpose of this work is to find an efficient block-structured
incoherent dictionary. The advantages of this optimized dic-
tionary include compact representation, robust stability under
the noise, and the rapid convergence.

The rest of this paper is organized as follows. Section 2
provides the detailed descriptions of the proposed algorithm.
The numerical simulation and experiments are given in Sec-
tion 3. The conclusions are drawn in Section 4.

2. DICTIONARY OPTIMIZATION

Many problems in signal and image processing can be cast as
inverting the linear system:

X = DA+ υ, (1)

where X ∈ Rd×L is the vectors of noisy observations (or
measurements), D ∈ Rd×K with d < K is a bounded linear
operator, A ∈ RK×L are the data to recover, and υ is an
additive noise with bounded variance.

For a given set of the signals X ∈ Rd×L, our goal is
to find a dictionary D ∈ Rd×K whose atoms are block-
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structured and incoherent, which ensures that the signals
can be accurately reconstructed through a computationally
efficient algorithm. Then we formulate the following opti-
mization problem:

arg min
D,b,A

{
∥X−DA∥2F + λΦ(D)

}
,

s.t. ∥αi∥0,b 6 κ, ∀i, |bj | 6 s, j ∈ b,
(2)

where αi is a column vector of sparse matrix A, κ is the
known sparsity level, b is a block structure with maximal
block size s, bj = {i ∈ 1, · · · ,K|b [i] = j} is the set of in-
dices for the block j, λ is a balance parameter and the regu-
larization term on the mutual coherence of D is defined as:

Φ(D) =

B∑
j=1

 ∑
p,q∈bj ,p̸=q

∥∥φT
p φq

∥∥2, (3)

where B is the number of the blocks, φp and φq denote the
different atoms in each block bj of the current dictionary, re-
spectively.

To solve Problem (2), we employ the coordinate relax-
ation technique to minimize the objective function based on
alternating A and D. For the given D(0) and b(0), the sparse
representation is initialized as the solution A(0) to Problem
(4) over A, which is solved by using the OMP method with
κ × s instead of κ non-zero entries. At each iteration t, the
dictionary D(t−1) is first fixed so that Problem (2) is reduced
to Problem (4) as follows:[

b(t),A(t)
]
= argmin

b,A

∥∥∥X−D(t−1)A
∥∥∥2
F
,

s.t. ∥αi∥0,b 6 κ, ∀i.
(4)

Then the BOMP method is used to calculate the sparse repre-
sentation A(t−1) by solving Problem (4).

Next, the two-stage clustering technique identifies the in-
trinsic block structure b(t) of the block sparse representation
A(t−1), and then the BOMP method is used to update A(t) a-
gain. That is, Problem (4) turns into finding a block structure
b(t) that is used for sparse coding of A. To update the block
structure b(t), the cost function is minimized as follows:

b(t) = min
b

∑
j∈[1,B]

∣∣∣ωj

(
A(t−1),b

)∣∣∣,
s.t. |bj | 6 s, j ∈ [1, B],

(5)

where |ωj | is the number of non-zero values in ωj .
To solve Problem (5), the BK-SVD+SAC method [5] as-

sumed that there is a maximal block size s for the block struc-
ture b in the block-sparsity constraint of A. They adopted
the agglomerative clustering algorithm [10] to extract the in-
trinsic block structure of the dictionary. However, in fact the
number of most similar atoms may be larger than the prede-
termined fixed number s. The agglomerative clustering al-
gorithm [10] has the disadvantage that the blocks may have

been incorrectly grouped at an early stage for lack of a relo-
cation provision of them. To overcome these drawbacks, we
propose a two-stage clustering approach based on agglomer-
ative hierarchical clustering. The two stages have the similar
procedures except for the constraint. Since the initial block
structure is estimated in the first stage, the agglomerative clus-
tering accuracy will be much improved in the second stage so
that the final clustering result is much better than the tradition-
al agglomerative clustering algorithm [10]. For each loop in
the first stage we compute the distances between blocks and
find the closest pair [j∗1 , j

∗
2 ] such that

[j∗1 , j
∗
2 ] = arg min

j1 ̸=j2
Fdist (ωj1 , ωj2) ,

s.t. Fdist (ωj1 , ωj2) 6 VHT ,
(6)

where VHT is a threshold value and the distance Fdist (ωj1 , ωj2) =
L∑

i=1

|ωj1 − ωj2 | is the city block metric. Then the blocks j∗1

with j∗2 are combined by enforcing ∀i ∈ bj2 : b [i] ← j1,
ωj1 ← {ωj1 ∪ ωj2} and ωj2 ← ϕ. This loop procedure is
executed repeatedly until no blocks can be merged under the
constraint on the preset threshold value. Subsequently, in the
second stage the estimated block structure in the first stage is
used as the starting values. Like the traditional agglomerative
clustering algorithm [10], at each loop we find the closest pair
[j∗1 , j

∗
2 ] of blocks satisfying the following formula:

[j∗1 , j
∗
2 ] = arg max

j1 ̸=j2
|ωj1 ∩ ωj2 | ,

s.t. |bj1 |+ |bj2 | 6 s.
(7)

Then we aggregate the closest pair of blocks j∗1 and j∗2
and update the block structure b(t). This loop procedure is
repeated until no blocks can be merged without breaking the
constraint on the block size. After the block structure b(t)

and the sparse representation A(t) are available, according to
the definition of block coherence of the dictionary [4], we can
reformulate Problem (2) in another form as follows:[

D(t),A(t)
]
= argmin

D,A

{
∥X−DA∥2F + λΦ(D)

}
s.t. ∥αi∥0,b(t) 6 κ, ∀i.

(8)

This Problem (8) can be solved in two steps: first by updating
dictionary, then adjusting the block coherence of the available
dictionary. In the first step, by omitting the second term on the
right-hand side of the equation defined in Problem (8), we can
solve the reduced version of Problem (8) as follows:[

D(t),A(t)
]
= argmin

D,A
∥X−DA∥2F

s.t. ∥αi∥0,b(t) 6 κ, ∀i.
(9)

Like BK-SVD [5], we sequentially update every block of
atoms in the dictionary D(t) and the corresponding nonzero
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values in A(t) to minimize the representation error in Prob-
lem (9). For each block j ∈ [1, B], the dictionary update step
proceeds as follows. Let Rωj denote the representation er-
ror of the signals Xωj excluding the contribution of the j-th
block, i.e. Rωj = Xωj −

∑
i ̸=j DbiA

bi
ωj

. We deduce that∥∥∥Rωj
−DbjA

bj
ωj

∥∥∥
F

is the representation error of the signals
with the indices ωj . In order to minimize this error, we take
the matrix of maximum rank |bj | that best approximates of
Rωj as DbjA

bj
ωj . According to the singular value decomposi-

tion (SVD) of the matrix Rωj , the dictionary update process
is carried out as follows:

Rωj = U∆VT , (10)
Dbj =

[
U1, · · · ,U|bj |

]
, (11)

Abj
ωj

=
[
∆1

1V1, · · · ,∆
|bj |
|bj |V|bj |

]T
, (12)

where the first |bj | principal components of Rωj are truncated
to update the block of atoms Dbj and the group sparse coeffi-
cients Abj

ωj .
Finally, the second step of the solution to Problem (8) is to

adjust the block coherence of the updated dictionary D(t). We
compute the gradient of the objective function with respect to
φr and equate it to zero. Thus the closed-form solution of
Problem (8) on φr is given as follows:

φr =

Idαrα
T
r + λ

∑
j∈bj ,j ̸=r

φjφ
T
j


\

XαT
r −

∑
k ̸=r

φkαkα
T
r

 ,

(13)

where Id is the identity matrix of size d×d, αr is the r-th row
group of the sparse representation A(t), φr is in the block of
atoms for bj , and αrα

T
r indicates the weight of the atom φr

used to encode X.

3. RESULTS AND ANALYSIS

3.1. Simulation Evaluation

A random matrix of size d × K is generated as the ini-
tial dictionary D ∈ R64×96 with independent and iden-
tically normally distributed entries. Each column of the
dictionary is normalized so that its Euclidean norm equal-
s to 1. The initial block structure for D is chosen as
b = [1, 1, 1, · · · , 32, 32, 32]. That is, the dictionary D is
consists of 32 subspaces with 3 atoms in each one. X is a set
of the L = 2500 test signals of dimension 64 with a 2-block
sparse representation over D. The active blocks in A are cho-
sen randomly and the coefficients are uniformly distributed
random entries again. According to Equation (1), the additive
white Gaussian noise (AWGN) with variant noise levels is

added to the data set X in order to generate the simulated
data synthetically with the desired SNR values.

In this simulation, for the given signals X, we evaluated
the overall performance of our developed algorithm to recov-
er the overcomplete dictionary D with the underlying block
structure b. The normalized representation error (NRE) was
computed as a function of the signal-to-noise ratio (SNR) of
the signals X corrupted by AWGN. For the synthetic signals
X with the variant SNR, the results of the proposed algorithm
are compared with those of K-SVD [1], and BK-SVD+SAC
[5] shown in Table 1. Note that for SNR 6 25dB, K-SVD
[1] reaches lower reconstruction error than BK-SVD+SAC
[5] and our BSIK-SVD, which implies that the use of block-
sparsifying dictionaries is unjustified. That is, the block struc-
ture no longer exists in the data when the SNR is low. Figure 1
gives the compared NRE results of these different algorithm-
s evaluated as a function of the number of iterations in the
noiseless setting. As can be seen from simulation results, the
proposed algorithm has the smaller representation errors and
the faster convergence rate than the existing state-of-the-art
methods when the SNR is high enough.

Table 1: The compared NRE results of our BSIK-SVD al-
gorithm, K-SVD [1], and BK-SVD+SAC [5] for simulated
signals with the variant SNR values.

SNR 5 15 25 35 45
[1] .4739 .2098 .0737 .0267 .0130
[5] .5674 .2298 .0760 .0244 .0080

BSIK-SVD .5668 .2292 .0747 .0236 .0075

Fig. 1: The compared NRE results of our BSIK-SVD, K-SVD
[1] and BK-SVD+SAC [5] evaluated as a function of the num-
ber of iterations in the noiseless setting.

3.2. Experiments on Real Images

Besides the simulations on synthetic signals, we have also im-
plemented the qualitative and quantitative evaluation on nu-

3554



merous test images from standard image databases [11]. In
this experiment, for a fair comparison of K-SVD [1], BK-
SVD+SAC [5] and our proposed BSIK-SVD algorithm, we
first initialized the dictionary D as a same random matrix of
size 64 × 96 with normally distributed entries and its nor-
malized columns. The maximal block size was s = 3 and
the block sparsity is typically set to κ = 2. All the non-
overlapping image patches of the same size 8 × 8 extracted
from a training image were reshaped as the training signals
X. Then we adopted the proposed algorithm and other popu-
lar methods [1, 5] to optimize the dictionary where the num-
ber of iteration is 50. Next, both the proposed algorithm and
BK-SVD+SAC were used to find a κ-block sparse solution,
whereas K-SVD was used to find a κ×s sparse representation.
Finally, we evaluated the results of these different algorithms
by the NRE and their convergence behavior. When the train-
ing image was also used as the test image, Table 2 shows the
comparison of the NRE/SSIM results obtained by the current
popular methods [1, 5] and the proposed algorithm separately
for a set of noiseless images. To further inspect the perfor-
mance of dictionary learning, the detailed reconstructed re-
sults of these different methods for the fragments of the Lena
image is shown in Figure 2, respectively. Table 2 presents
that our proposed algorithm with less NRE results has higher
SSIM results than K-SVD [1] and BK-SVD+SAC [5]. The
visual comparisons in Figure 2 demonstrate that Figure 2(d)
has much clearer textures recovered in the regions (pointed by
the red arrow) than Figure 2(c), whereas Figure 2(b) almost
loses all the fine structures. These experiments verify that the
proposed algorithm has better recovery of real images than
the baseline methods.

Table 2: NRE/SSIM results for a set of noiseless images.
Images [1] [5] Proposed
House .3440/.8277 .0828/.9163 .0739/.9204

Monarch .3022/.8786 .1730/.8990 .1608/.9093
Baboon .2509/.7399 .1996/.6860 .1921/.6872
Barbara .1977/.8817 .1109/.9004 .1099/.9030

Lena .1613/.9058 .0880/.9078 .0870/.9115

4. CONCLUSIONS

In this paper, we addressed the problem of block-structured
incoherent dictionary learning for sparse representations. In
fact, the proposed algorithm, which can be seen as an exten-
sion of K-SVD [1] or BK-SVD+SAC [5], incorporates the
block structure identification and the intra-block coherence
regularization for block sparse representations of the signals.
Our BSIK-SVD algorithm consists of two successive steps at
each iteration: sparse coding and dictionary update. In sparse
coding step, we employed the two-stage clustering technique
to identify the intrinsic block structure existed in the dictio-
nary for structured sparse coding. For dictionary update step,

(a) (b)

(c) (d)

Fig. 2: Visual comparisons of the reconstructed results for
the Lena image: (a) Original subimage; (b) K-SVD [1]; (c)
BK-SVD+SAC [5] and (d) the proposed algorithm.

we solved the minimization problem that incorporated the de-
sired constraints of the block coherence between the dictio-
nary atoms after the block-sparsifying dictionary update.The
experimental results of synthetic data and real images demon-
strate that our BSIK-SVD algorithm has less representation
error and fewer artifacts in most cases, which leads to accu-
rate sparse representations for a given set of signals.
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