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Abstract—In this paper, we derive optimal transmission poli-
cies for energy harvesting sensors to maximize the utility obtained
over a finite horizon. First, we consider a single energy harvesting
sensor, with discrete energy arrival process, and a discrete
energy consumption policy. Under this model, we show that
the optimal finite horizon policy is a threshold policy, and
explicitly characterize the thresholds, and the thresholds can
be precomputed using a recursion. Next, we address the case
of multiple sensors, with only one of them allowed to transmit
at any given time to avoid interference, and derive an explicit
optimal policy for this scenario as well.

I. INTRODUCTION

Energy harvesting is a paradigm where wireless sensor
nodes have the ability to recharge their batteries from their
surrounding environment, by using solar, heat or vibration
energy. Due to the potential for energy harvesting nodes to
significantly enhance the lifetime of a sensor network, there
has been considerable interest in this paradigm; see [1], [2]
for surveys and examples.

Since the amount of ambient energy available for the
nodes to replenish their batteries can vary unpredictably, it
is important for energy harvesting nodes to make judicious
use of available energy. In particular, energy harvesting nodes
often have to tradeoff between transmitting at a particular
time to obtain a certain utility, and saving energy for potential
future use. Clearly, the characteristics of the renewable energy
source has a key role to play in this tradeoff. In addition, the
instantaneous utility obtained by expending a given amount of
energy could also be time-varying, due to inherent importance
of the data being sent, or simply due to the channel fading. We
address this basic tradeoff in this paper. Specifically, we ask for
an optimal energy utilization policy that maximizes the total
utility obtained over a finite horizon, when the instantaneous
utility is time varying, and the battery replenishes according
to a random process.

Related Work: In [3], the authors consider the problem
of maximizing the finite horizon throughput of a transmitter
sending data over a time-varying channel under a total energy
constraint (for example, a fixed battery). Assuming that the
channel state is revealed to the transmitter before each trans-
mission attempt, the authors develop a dynamic programming
algorithm that provides an optimal policy for the case where
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the throughput obtained is concave in the energy spent. For
the special case when the throughput obtained in linear in the
energy spent, the authors derive a closed-form optimal policy.

For the energy harvesting case, maximizing a time-average
utility function over an infinite horizon is considered in [4].
Under a Bernoulli energy arrival, and binary energy expendi-
ture model, the authors show that the optimal policy is of the
threshold form, with the threshold values being monotonically
decreasing in the energy available. However, an explicit char-
acterisation of the thresholds was not possible. In a closely
related paper [5], the authors derive structural properties such
as monotonicity for an infinite horizon discounted reward
Markov decision process. Similar properties are established
for the finite horizon case in [6]. Another recent paper [7]
proposes computationally simple control policies based on
heuristics that achieve near-optimal performance in the finite-
horizon case with a finite battery. Finally, [8], [9] take a queue
stability view of energy harvesting networks, using Lyapunov
optimization techniques.

Contributions: In the present paper, we derive optimal
transmission policies for energy harvesting nodes to maximize
a utility function over a finite horizon. The utility function
is assumed to be a monotonic increasing function of the
energy used by the node. First we consider a single node
case, where the node is allowed to transmit any discrete
quantum of available energy, under a general energy burst
arrival model. We show that the optimal transmission policy is
of the threshold form, and we also explicitly characterize the
threshold values, where the thresholds can be computed using
a recursion. Next, we show that for a case with more than
one energy harvesting node, the same results can be derived,
although the structure becomes more cumbersome.

II. SYSTEM MODEL

We consider slotted time, and a single node that harvests
energy from the environment. Let Ek be the amount of energy
harvested at time slot k. The node is assumed to have a finite
battery of size B in which it stores the harvested energy. For
each time k, a realization of channel hk ≥ 0, between the
transmitter and the receiver is revealed to the transmitter, after
which the node transmits using energy Fk ≥ 0, and obtains a
payoff of rk(hk, Fk). Although we can allow for any monoton-
ically increasing payoff function, we take rk = log(1+Fkhk).

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 3542



We assume that hk is drawn i.i.d. from some distribution φ.
Let the energy available at time k be denoted by Uk. Thus,
Uk+1 = min{Uk + Ek+1 − Fk, B}.

We consider the finite-horizon problem, where the expected
total payoff over n time slots is P = E{

∑n
i=1 log(1+Fihi)}.

We are interested in finding the energy utilization Fi that
maximizes the total payoff P, under the energy neutrality

constraint
∑k

i=1 Fi ≤
∑k

i=1 Ei for every k = 1, . . . , N .
Under a general energy arrival and energy consumption

model, the problem is difficult to solve. To see this, consider
the simple case of n = 2 time slots. At time slot 1, given
energy E1 ≤ B, the decision is to determine the energy
F1 to transmit. Rewriting P as a dynamic program, with
payoff at time slot 1 as P1(F1, E1) = maxF1≤E1

r1(h1, F1)+
E{r2(h2, (min{E1 − F1 + E2, B}))}, where the second ex-
pectation is over the random energy arrival E2. Since the
expectation in the second term depends on the carry-forward
energy E1 −F1, there is no easy way to establish the optimal
value of F1 for general energy arrivals. Indeed, even without
random energy arrivals, it is difficult to explicitly characterize
the optimal policy; however, as shown in [3, Section II E]
the problem is concave, and lends itself to fast numerical
solutions. In this paper, we overcome this difficulty by re-
stricting ourselves to discrete energy consumption and discrete
burst energy arrivals. With this restriction, we shall see that
an explicit characterisation becomes feasible.

III. OPTIMAL POLICY FOR A SINGLE NODE

A. Binary Energy Arrival and Consumption Model

We first consider the case of Bernoulli energy arrivals
and binary energy consumption model, i.e. Ek, Fk ∈ {0, 1}.
Let Ek = 1 with probability p. For this case, we derive a
finite horizon optimal policy. With abuse of notation, for this
subsection, we let rk = rk(hk, 1), since Fk ∈ {0, 1}.

Theorem 1: Under Bernoulli energy arrivals and binary
energy consumption model, the optimal transmission policy
is given by the following threshold rule.

F ⋆
k =

{

1 if rk + γm−1
k+1 > γm

k+1,
0 otherwise,

where m is the energy available at time slot k. The thresholds
are given by the following recursion: γ0

n = pE{rn} and γi
n =

E{rn}, i > 0, and for 0 < m ≤ n− k

γm
k = (1 − p)E

{

max
{

rk + γm−1
k+1 , γm

k+1

}}

+pE
{

max
{

rk + γm
k+1, γ

m+1
k+1

}}

.

For m ≥ n − k + 1, γm
k = E {rk} + γn−k

k+1 , and for m = 0,

γ0
k = pE

{

max
{

rk + γ0
k+1, γ

1
k+1

}}

+ (1 − p)E
{

γ0
k+1

}

.
Proof: Let ck−1, k = 1, . . . , n, be the carried over energy from
time slot k− 1 to time slot k, and Uk = min{ck−1 +Ek, B}
be the total energy available at time slot k, with c0 = 0, and
ck = Uk − Fk .

Then the optimization problem can be posed in the
dynamic programming format, by writing the pay-
off at time slot k = 1, . . . , n as Pk(ck−1, hk) =

maxFk∈{0,1},Fk≤Uk

[

log(1 + Fkhk) + P̄k+1(ck)
]

, where
P̄k+1(x) = E{Pk+1(x, hk+1)}.

To find the optimal transmission policy {Fk}nk=1, lets start
from the last time slot n, where we have P̄n(cn−1) =
E{log(1 + hn1Un≥1)}, where 1Un≥1 is the indicator that Un

is at least 1. Note that P̄n(x) = E{rn} for x > 0 and
P̄n(0) = pE{rn}. Let γ0

n = P̄n(0) and γx
n = P̄n(x) for x > 0.

Next, consider the n − kth time slot (i.e., there are k
remaining time slots), and let γm

n−k := P̄n−k(m). Then, we
have Pn−k(cn−k−1, hn−k)

= max
Fn−k∈{0,1},Fn−k≤Un−k

[log(1 + Fn−khn−k)

+ P̄n−k+1(Un−k − Fn−k)
]

,

(a)
= 1Un−k=1

[

max
{

rn−k + γ0
n−k+1, γ

1
n−k+1

}]

+ 1Un−k=2

[

max
{

rn−k + γ1
n−k+1, γ

2
n−k+1

}]

. . .

+ 1Un−k=k

[

max
{

rn−k + γk−1
n−k+1, γ

k
n−k+1

}]

+ 1Un−k≥k+1

[

rn−k + γk
n−k+1

]

+1Un−k=0γ
0
n−k+1. (1)

To parse (a), note that if at time slot n−k, the available energy
Un−k is at least k + 1, then Fn−k = 1, since there are only
k more slots left and hence the node should transmit in time
slot n− k to get the payoff of rn−k + γk

n−k+1. This explains
the second last term. Similarly, if cn−k−1+En−k = m, where
m < k+1, then the choice is between using a unit energy in
time slot n − k or using all the m units of energy in future
time slots.

In order to obtain the optimal solution Fn−k when there are
m units of energy (i.e, Un−k = m), 1 ≤ m ≤ k, we compare
the two arguments inside the maximum of the mth term. In
particular, we get that the optimal solution is Fn−k = 1 if
rn−k + γm−1

n−k+1 > γm
n−k+1, and Fn−k = 0 otherwise. In case

m = 0, then payoff is γ0
n−k+1 which is the last term of the

expression.

The above expression for Pn−k(cn−k−1, hn−k) also sug-
gests a straightforward recursion for computing the thresh-
olds γj

n−k = E{Pn−k(j, hn−k)}. Indeed, observe that when
cn−k−1 = j, 0 < j ≤ k then Un−k = j + 1 with probability
p and Un−k = j with probability 1 − p. Thus, taking the
expectation of (1), we get for 0 < j ≤ k

γj
n−k = E

{

max
{

rn−k + γj−1
n−k+1, γ

j
n−k+1

}}

,

= (1− p)E
{

max
{

rn−k + γj−1
n−k+1, γ

j
n−k+1

}}

+pE
{

max
{

rn−k + γj
n−k+1, γ

j+1
n−k+1

}}

.

Similarly, we can obtain γj
n−k for j = 0 and j ≥ k + 1.

B. Optimal policy for the general discrete case

In this section, we consider a more general scenario, where
both the energy arrival and transmitted energy can take any
discrete value between 0 and B. Here too, we are able to
explicitly characterize the optimal finite horizon throughput
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maximizing policy. Assume that i units of energy arrive during
each slot with probability pi, i = 0, 1, . . . , B, and that this
process is i.i.d. across time.

Theorem 2: Suppose m units of energy are available in slot
k, i.e., Uk = m. Then the optimal policy is to transmit F ⋆

k = q
units of energy, where q = argmaxj∈{0,1,...,m} log(1+jhk)+
γm−j
k+1 .

Proof: Similar to the previous section, the optimization
problem can be posed in the dynamic programming format,
by writing the payoff at time slot k = 1, . . . , n as

Pk(ck−1, rk) = max
Fk≤Uk

[

log(1 + Fkhk) + P̄k+1(ck)
]

,

where P̄k+1(x) = E{Pk+1(x, hk+1)}.
To find the optimal transmission protocol {Fi}ni=1, lets

start from the last time slot n, where we have P̄n(cn−1) =
E{log(1 + Unhn)}. Let γm

n = P̄n(m) = E{log(1 +
hn min{m + En, B})}, m = 0, 1, . . . , B. Let γm

k := P̄k(m)
and define

αm
k+1 := max

j∈{0,1,...,m}
log(1 + jhk) + γm−j

k+1 . (2)

For the n− kth time slot, we have Pn−k(cn−k−1, rn−k)

= max
Fn−k

[

log(1 + Fn−khn−k) + P̄n−k+1(cn−k+1)
]

=
B
∑

m=0

1Un−k=mαm
n−k+1. (3)

In order to obtain the optimal solution Fn−k, we need to
look at the mth term of (3), where Un−k = m. Then, the
optimal F ⋆

n−k = q, where q is the index j that achieves the
maximum in (2). To find the value of q, we need to know
γj
n−k+1, j = 0, . . . ,m, which can be found as follows.
Setting cn−k−1 = j and taking the expectation of (3), we

get for 0 ≤ j ≤ B

γj
n−k =

B−j−1
∑

i=0

piE
{

αi+j
n−k+1

}

+

⎛

⎝

B
∑

i=B−j

pi

⎞

⎠E
{

αB
n−k+1

}

,

(4)
where pi is the probability that En−k = i.

Remark 1: The thresholds γj
n−k’s depend only on the dis-

tribution of energy arrivals and channel gains and can be
computed ahead of time.

IV. MULTIPLE NODES

In this section, we extend the problem and consider two
energy harvesting nodes. For ease of notation, we consider
the Bernoulli energy arrival model, where node i harvests
either one unit of energy, or does not harvest any energy. In
particular, let Ei

t be the energy harvested by node i in time
slot t. We assume Et

i = 1 with probability pi, independently
of each other, and independent from slot-to-slot. At each time
slot a new channel realization is given to the two nodes, and
to avoid interference, at most one of two nodes is allowed
to transmit. We also restrict ourselves to the unit energy

consumption model. If node i transmits at time t, then it gets
a payoff log(1 + hi

t). We consider the finite horizon problem

P = maxE

{

n
∑

t=1

log(1 + F 1
t h

1
t ) + log(1 + F 2

t h
2
t )

}

,

such that F 1
t + F 2

t ≤ 1, where F i
t ∈ {0, 1}, and F i

t = 1 if
an unit amount of energy is transmitted from node i at time
t. The objective is to maximize P , under the per-node energy
neutrality constraint

∑k
t=1 F

i
t ≤

∑k
t=1 E

i
t . Our next result

derives an optimal policy for this case.

Theorem 3: Suppose mi units of energy be available in slot
k at node i. Then the optimal policy is to transmit F i

k = 1, i =
1, 2 if q = i, i = 1, 2, where q is the index of the maximum
in (5). Otherwise, if q = 3, then F i

k = 0, i = 1, 2.

Proof: Let cik, k = 1, . . . , n, be the energy carried over by
node i from time-slot k to k+1. Let U i

k = min{cik−1+Ei
k, B}

be the total energy available with node i at time slot k with
ci0 = 0, and cik = U i

k − F i
k .

Then the optimization problem can be posed in the dynamic
programming format, by writing the payoff at time slot k =
1, . . . , n as Pk(c1k−1, c

2
k−1, h

1
k, h

2
k)

= max
F 1

k
,F 2

k
∈{0,1},F 1

k
+F 2

k
≤1,F i

k
≤Ui

k

[

log(1 + F 1
t h

1
t )+

log(1 + F 2
t h

2
t ) + P̄k+1(c

1
k, c

2
k),

]

where P̄k+1(x, y) = E{Pk+1(x, y, h1
k+1, h

2
k+1)}.

To find the optimal transmission protocol {F i
k}

n
k=1, lets start

from the last time slot n, where we have P̄n(c1n−1, c
2
n−1) =

E{max{r1n1U1
n
≥0, r

2
n1U2

n
≥0}}, where rin−k = log(1+ hi

n−k).
Thus, the optimal decision is F 1

n = 1, F 2
n = 0 whenever

h1
n1U1

n
≥0 > h2

n1U2
n
≥0, and vice-versa.

Let γn−k(x, y) := P̄n−k(x, y). Consider the n − kth time
slot, where there are k more remaining time slots. Then, we
can write Pn−k(c1n−k−1, c

2
n−k−1, h

1
n−k, h

2
n−k)

=
B
∑

m1=1

B
∑

m1=1

1U1

n−k
=m1

1U2

n−k
=m2

[βn−k(m1,m2)] ,(6)

where βn−k+1(m1,m2) is defined in (5), where the three
terms in (5), correspond to the payoff obtained by transmitting
a unit energy from node 1, node 2, and not transmitting any
energy from any node, respectively. During time slot n−k, if
the available energy at the two nodes is U1

n−k = m1, U
2
n−k =

m2,m1,m2 < k + 1, the optimal F i
t = 1, i = 1, 2 if

q = i, where q is the index of the maximum in (5), and
F i
t = 0, i = 1, 2 if q = 3. Finally, we can recursively compute

the coefficients γn−k(m1,m2) by taking expectation of (6).

A. Sub-optimal policy for multiple nodes

The energy transmitted by the optimal policy (section IV)
at any slot depends on thresholds γ(i, j)’s, where i, j is the
energy available at nodes 1 and 2, respectively. Thus, B2

values of γ(i, j)’s have to be computed for each slot. If B
is large, this becomes quite significant.
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βn−k(m1,m2) = max{r1n−k + γn−k+1(m1 − 1,m2), r
2
n−k + γn−k+1(m1,m2 − 1), γn−k+1(m1,m2)}. (5)
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Fig. 1. Performance of the single node optimal policy for B = 10. The
solid curve represents optimal payoff under uniform energy arrivals in [0:10],
and the dashed curve corresponds to binary energy arrivals and transmission.

A simpler alternative is a sub-optimal policy S that makes
decoupled decisions at the two nodes. Thus, only 2B thresh-
olds γ’s, B for each node, have to be computed. Let us discuss
the details for the binary case for ease of exposition.

Fix a given sample path for the energy arrivals to the
two nodes, and for the channel gain realizations. Assume
that each node ignores the other node, and independently
computes the optimal policy described in Section III. Denote
the decoupled decisions of node i from Section III at slot k as
Fk(i) ∈ {0, 1}. Our sub-optimal policy S operates as follows.
During slot k, if Fk(1) = Fk(2) = 1, transmit from unit
energy from node with larger channel gain, i.e., from node
i⋆, where i⋆ = argmaxi=1,2 h

i
k. If Fk(1) = 1, Fk(2) = 0,

transmit unit energy from node 1, and vice-versa. Finally, if
Fk(1) = Fk(2) = 0, do not transmit from either node. Let us
call the optimal policy of Section IV as O.

Lemma 1: S and O differ only when Fk(1) = Fk(2) = 0.
Proof: Claim: If Fk(1) = Fk(2) = 1, then O also transmits
from the node with the higher current channel gain. Proof by
contradiction. Without loss of generality, at slot k, let h1

k > h2
k.

Consider the two cases: i) O does not transmit any energy from
any node at slot k. Then O is conserving energy at node 1 for
later use. Let it use that energy from node 1 at slot ℓ > k (if
it does not use that energy at all, then its wasted). But since
Fk(1) = 1, the optimal policy for just the single node 1, there
is no gain in shifting energy from slot k to ℓ at node 1, so O
will also transmit from node 1 at slot k. ii) O transmits unit
energy from node 2 that has lower channel gain. The essential
idea remains the same that as above that if O transmits from
node 2, it is saving energy at node 1 for later use, but since
Fk(1) = 1, it is better to use node 1 now rather than later.
Moreover, since h1

k > h2
k, O will gain more by transmitting

unit energy from node 1 than node 2 in slot k.
Otherwise, if Fk(1) = 1, Fk(2) = 0, then O transmits unit
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Fig. 2. Performance comparison of optimal policy O and sub-optimal policy
S for two nodes.

energy from node 1 similar to S. Argument is exactly as above.

Lemma 1 shows that policies S and O could potentially
differ only in slots where neither node transmits under S.
Typically, such a scenario happens infrequently and thus the
payoff obtained by S and O is expected to be similar (see Fig.
2). The sub-optimal policy S can be easily extended for more
than 2 nodes and non-binary transmission, although obtaining
analytical results seems difficult.

V. NUMERICAL RESULTS

Fig. 1 plots the performance of the optimal policy for the
single node case, with battery size B = 10. The solid curve
represents optimal payoff under uniform energy arrivals in
[0:10], and the dashed curve corresponds to Bernoulli energy
arrivals at rate 0.5, and binary transmission.

In Fig. 2, we plot the optimal policy for the two nodes case
with Bernoulli energy arrivals (at rate 0.5 for each node), and
binary transmission. In Fig. 2, we also plot the performance
of the sub-optimal policy S (Section IV-A), and see that
the performance of S is very close to the optimal policy as
suggested by Lemma 1.

VI. CONCLUDING REMARKS

We presented exact optimal policies for maximizing utility
over finite horizon in an energy harvesting system, assuming
that energy arrival and expenditure are both discrete valued.
Typically, finding closed form optimal policies is a hard
problem. However, restricting ourselves to a discrete energy
model allowed us to explicitly characterize the optimal policy.
Indeed, we were able to express the optimal policy as a
threshold policy where thresholds can be pre-determined using
a recursive relation. Our methods could be applicable to other
related problems as well.
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