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ABSTRACT

Wireless energy transfer (WET) via far-field radio signal has e-
merged as a new solution for powering wireless networks. To over-
come the significant path loss in wireless channels, multi-antenna or
multiple-input multiple-output (MIMO) techniques have been pro-
posed to enhance the transmission efficiency and distance for WET.
However, in order to reap the large energy beamforming gain in
WET, acquiring channel state information (CSI) at the energy trans-
mitter (ET) is an essential task. This task is particularly challenging
for WET systems, since existing channel training and feedback
methods used for communication receivers cannot be implemented
at the energy receiver (ER) due to the hardware limitation. To tackle
this problem, in this paper we consider a point-to-point MIMOWET
system with transmit energy beamforming, and propose a new chan-
nel learning method that requires only one feedback bit from the ER
to ET per feedback interval. Each feedback bit indicates the increase
or decrease of the harvested energy by the ER between the present
and previous intervals, which can be measured without changing the
existing hardware at the ER. Based on such feedback information,
the ET adjusts transmit energy beamforming in different intervals
and at the same time obtains an improved estimate of the MIMO
channel by applying the analytic center cutting plane method (AC-
CPM). By numerical examples, we show the performance of our
proposed new channel learning algorithm for MIMO WET systems
in terms of convergence speed and energy transfer efficiency, as
compared to existing algorithms.

1. INTRODUCTION

Harvesting energy in nature has received an upsurge of interest for
the design of energy efficient wireless communication. In particular,
radio signal is a viable new source for wireless energy harvesting. In
order to achieve radio signal enabled energy harvesting for wireless
devices that require constant and continuous power supplies, a new
technique by employing dedicated energy transmitters (ETs) to send
wireless power to a set of distributed energy receivers (ERs), termed
far-field wireless energy transfer (WET), has drawn significant at-
tention recently [1–3].

How to combat the significant signal path loss in wireless chan-
nels is one key challenge in implementing practical WET systems
of both high energy transfer efficiency and long operating range. To
overcome this issue, multi-antenna or multiple-input multiple-output
(MIMO) technique, which has been successfully applied in wire-
less communication to improve the transmission rate and reliability
over wireless channels, is also an appealing solution for WET (see
e.g. [4–6]). However, the benefit of MIMO in WET crucially relies
on the availability of channel state information (CSI) at the ET via
the channel feedback from the ER, but acquiring such information
is particularly challenging due to the hardware limitation of the ER

Fig. 1: A point-to-point MIMO system for wireless energy transfer (WET).

in practice. As shown in Fig. 1, one ER with multiple antennas har-
vests the energy from the signal sent by one multiple-antenna ET by
applying the rectenna at each receive antenna [7], by which the ra-
dio frequency (RF) signal from each receive antenna is converted to
a direct current (DC) signal via a rectifier, and then the DC signals
from all receive antennas are combined to charge the battery. Since
no baseband signal processing is implementable at the ER, existing
channel training and feedback methods (see e.g. [8] and the refer-
ences therein) for the receiver in wireless communication cannot be
applied at the ER in WET and thus new channel learning and feed-
back schemes need to be designed, which motivates this work.

In this paper, we study a point-to-point MIMO WET system
with transmit energy beamforming, as shown in Fig. 1. We propose
a two-phase transmission protocol in the MIMO WET system for
channel learning and energy transmission, respectively. We propose
a new channel learning algorithm that requires only one feedback
bit from the ER to ET per feedback interval. Each feedback bit in-
dicates the increase or decrease of the harvested energy at the ER
between the present and previous intervals. Based on such feedback
information, the ET adjusts transmit energy beamforming in differ-
ent intervals and at the same time obtains an improved estimate of
the MIMO channel via applying the analytic center cutting plane
method (ACCPM) [9]. By numerical examples, we show the per-
formance of our proposed new channel learning algorithm in terms
of convergence speed and energy transfer efficiency, as compared to
existing algorithms.

2. SYSTEMMODEL

We consider a point-to-point MIMO WET system as shown in Fig.
1, where one ET withMT > 1 transmit antennas delivers wireless
energy to one ER with MR ≥ 1 receive antennas. We assume a
quasi-static flat fading channel model, where the channel from the
ET to ER remains constant within each transmission block and may
change from one block to another. We denote each block duration as
T , which is assumed to be sufficiently long for typical low-mobility
and short-range WET applications.

We consider linear energy beamforming at the multiple-antenna
ET. Without loss of generality, we assume that the ET sends d ≤
MT energy beams. Let the jth beamforming vector be denoted
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Fig. 2: The two-phase transmission protocol.

by wj ∈ C
MT×1 and its carried energy-modulated signal by sj ,

j ∈ {1, . . . , d}. Then the transmitted signal at ET is given by
x =

∑d

j=1 wjsj . Since sj ’s do not carry any information, they
can be assumed to be independent sequences from an arbitrary dis-
tribution with zero mean and unit variance, i.e., E

(|sj |2
)
= 1, ∀j,

where E(·) denotes the expectation and | · | denotes the absolute
value of a complex number. Furthermore, we denote the transmit
covariance matrix as S = E(xxH) =

∑d

j=1 wjw
H
j with the sub-

script H denoting the conjugate transpose. Note that given any pos-
itive semi-definite matrix S, i.e., S � 0, the corresponding energy
beams w1, . . . ,wd can be obtained from the eigenvalue decompo-
sition (EVD) of S with d = rank(S). Assume that the ET has a
transmit sum-power constraint P over all transmit antennas; then we
have E(‖x‖2) = ∑d

j=1 ‖wj‖2 = tr(S) ≤ P , where ‖ · ‖ denotes
the Euclidean norm of a complex vector and tr(·) denotes the trace
of a square matrix.

The ER harvests the wireless energy carried by all d energy
beams from MR receive antennas. By denoting the MIMO chan-
nel matrix from the ET to ER as H ∈ C

MR×MT , then the total
harvested energy at ER over one block of interest is expressed as [4]

Q = ηTE
(‖Hx‖2) = ηTtr(GS), (1)

where 0 < η ≤ 1 denotes the energy harvesting efficiency of the
rectifier at each receive antenna andG = HHH is a positive semi-
definite matrix, i.e.,G � 0. Since η is a constant, we assume η = 1
in the sequel of the paper unless stated otherwise. It is assumed
that the ER cannot estimate the MIMO channel H (or G) given
its low-complexity receiver (see Fig. 1); however, it can measure
the average harvested energy amount over a certain period of time
by simply connecting an “energy meter” at the combined DC signal
output as shown in Fig. 1.

We aim at designing the energy beams at the ET to maximize
the transferred energy to the ER, i.e.,Q given in (1), over each trans-
mission block subject to a given transmit sum-power constraint. The
problem is thus formulated as

max

S
Ttr(GS)

s.t. tr(S) ≤ P, S � 0. (2)

It has been shown in [4] that the optimal solution to (2) is given
by S∗ = PvEv

H
E , which achieves the maximum harvested energy

Qmax = TPλE , with λE and vE denoting the dominant eigen-
value and its corresponding eigenvector of G, respectively. Since
rank (S∗) = 1, this solution implies that sending one energy beam
(i.e., d = 1) in the form of w1 =

√
PvE is optimal for the point-

to-point MIMO WET setup. This solution is thus referred to as the
optimal energy beamforming (OEB) for a givenG.

However, implementing the OEB requires that the ET perfectly
knows the MIMO channel, which needs to be estimated in practical
systems. In this paper, we propose a two-phase transmission proto-
col as shown in Fig. 2: in the first phase, the ET implements channel
learning (to be specified next) to estimate the MIMO channel; and
in the second phase, based on the estimated MIMO channel the ET
transmits with the corresponding OEB for WET. We explain the two
phases in more detail as follows.

The channel learning phase corresponds to the first τ amount of
time in each block of duration T , which is further divided into NL

feedback intervals each of length Ts, i.e., τ = NLTs. For conve-
nience, we assume that N = T/Ts is an integer denoting the total
block length in the number of feedback intervals. During this phase,
the ET transmits with different covariance matrices (or sets of energy
beamforming vectors) over NL feedback intervals. Let the transmit
covariance at ET in interval n ∈ {1, . . . , NL} be denoted by SL

n.
Then the transferred energy to ER over the nth interval is given by
QL

n = Tstr(GSL
n). At the same time, the ER measures its har-

vested energy amount QL
n and then feeds back one bit, denoted by

fn ∈ {0, 1}, to indicate whether the harvested energy in the nth in-
terval is larger (i.e., fn = 0) or smaller (i.e., fn = 1) than that in
the (n − 1)th interval, n = 1, . . . , NL. For the convenience of our
analysis later, we set fn ← 2fn − 1 such that fn ∈ {−1, 1}. More
specifically, if QL

n ≥ QL
n−1, then fn = −1; while if QL

n < QL
n−1,

then fn = 1. Also we denote QL
0 � 0 and equivalently SL

0 = 0

for convenience. Notice that the feedback interval Ts should be de-
signed considering the practical feedback link rate from the ER to
ET as well as the sensitivity of the energy meter at the ER. For the
purpose of exposition, we assume in this paper thatQL

n’s are all per-
fectly measured at the ER, and thus fn’s are all accurately deter-
mined at the ER and then sent back to the ET without any error, and
furthermore the consumed energy for sending back fn’s is negligible
at the ER as compared to its average harvested energy. Also notice
that during the channel learning phase, the ER transmits the feed-
back bits to the ET over a dedicated communication channel and at
the same time also receives the wireless energy from the ET over
another orthogonal frequency channel.

The subsequent energy transmission phase in each block corre-
sponds to the remaining T − τ amount of time. Let the estimate of
vE from the estimated channel matrix ofG in the channel learning
phase be denoted by ṽE . Then based on the principle of OEB, the ET
sets the (rank-one) transmit covariance in the energy transmission
phase as SE = P ṽE ṽ

H
E . Accordingly, the total harvested energy at

ER during this phase is expressed as QE = (T − τ )P ṽH
EGṽE .

Combining the above two phases, the total harvested energy at
ER over one particular block is given by

Qtotal =

NL∑
n=1

Tstr(GS
L
n) + (T − τ )P ṽ

H
EGṽE . (3)

In (3), we observe that if the estimated MIMO channel is accurate
with given finite NL (or τ ), then it follows that ṽH

EGṽE ≈ λE . In
this case, we have Qtotal → Qmax by increasing the block dura-
tion, i.e., N → ∞ or T → ∞. However, given finite N , there is
in general a trade-off in time allocation, i.e., NL versus N − NL,
between channel learning and energy transmission phases in order
to maximize Qtotal in (3).

3. CHANNEL LEARNINGWITH ONE-BIT FEEDBACK

In this section, we propose a new channel learning algorithm for the
ET to estimate the matrixG based on the one-bit feedback from the
ER over each feedback interval in the channel learning phase. The
proposed algorithm is based on the celebrated ACCPM in convex
optimization [9]. To the authors’ best knowledge, this paper is the
first attempt to apply this technique to channel learning with one-bit
feedback. In the following, we first introduce ACCPM,1 and then
present the ACCPM based channel learning algorithm with one-bit
feedback.

1We refer the readers to [9] for more details of ACCPM.
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3.1. Introduction of ACCPM
ACCPM is an efficient localization and cutting plane method for
solving general convex or quasi-convex optimization problems [9,
10], with the goal of finding one feasible point in a convex target set
X ⊆ R

m×1,m ≥ 1, where X can be the set of optimal solutions to
the optimization problem. Suppose that any point in the target set X
is known a priori to be contained in a convex set P0, i.e., X ⊆ P0.
P0 is referred to as the initial working set. The basic idea of ACCPM
is to query an oracle for localizing the target set X through finding
a sequence of convex working sets, denoted by P1, · · · ,Pi, · · · . At
each iteration i ≥ 1, we query the oracle at a point x(i) ∈ R

m×1,
where x(i) is chosen as the analytic center of the previous working
set Pi−1. If x(i) ∈ X , then the algorithm ends. Otherwise, the
oracle returns a cutting plane, i.e., ai �= 0 and bi satisfying that

a
T
i z ≤ bi for z ∈ X , (4)

which indicates that X should lie in the half space of Hi =
{z|aT

i z ≤ bi} with the subscript T denoting the transpose. After
the querying, the working set is then updated as Pi = Pi−1 ∩ Hi.
By properly choosing the cutting plane in (4) based on x(i), we can
have P0 ⊇ · · · ⊇ Pi ⊇ X . Therefore, the returned working set Pi

will be reduced and eventually approach the target set X as i → ∞.
It is worth noting that given query point x(i), if the cutting plane

aT
i z = bi in (4) contains x(i), then it is referred to as a neutral
cutting plane; if aT

i x
(i) > bi, i.e., x(i) lies in the interior of the

cut half space, then it is named a deep cutting plane; otherwise, it
is called as a shallow cutting plane. For ACCPM, a deep or at least
neutral cutting plane is required in each iteration.
3.2. ACCPM Based Channel Learning Algorithm
In this subsection, we present the proposed channel learning algo-
rithm based on ACCPM. First, we define the target set for our prob-
lem of interest. Since any positively scaled estimate of G results in
the same OEB ṽE for the energy transmission phase, we define the
target set as X = {Ḡ|0 � Ḡ � I, Ḡ = βG,∀β > 0}, which
contains all scaled matrices ofG satisfying that 0 � Ḡ � I . Since
0 � Ḡ � I is known a priori, we have the initial convex working
set as P0 = {Ḡ|0 � Ḡ � I}, i.e., X ⊆ P0.

Next, we show that the one-bit feedback fn’s in the NL feed-
back intervals play the role of oracle in ACCPM for our problem,
which return a series of working sets {Pn} to help localize the tar-
get set X . Consider each feedback interval as one iteration. Then,
for any feedback interval n ∈ {2, . . . , NL},2 by querying the one-
bit feedback fn, the ET can obtain the following inequality for QL

n

and QL
n−1 (recall that QL

n = Tstr(GSL
n)):

fntr
(
G(SL

n − S
L
n−1)

)
≤ 0, (5)

which can be regarded as a cutting plane such thatG lies in the half
space of Hn = {Ḡ|fntr

(
Ḡ(SL

n − SL
n−1)

) ≤ 0}. Accordingly,
by denoting P1 = P0, we can obtain the working set Pn at interval
n ≥ 2 by updating Pn = Pn−1 ∩Hn, or equivalently,

Pn =
{
Ḡ
∣∣0 � Ḡ � I, fitr

(
Ḡ

(
SL

i − SL
i−1

))
≤ 0, 2 ≤ i ≤ n

}
.

(6)

It is evident that P0 = P1 ⊇ P2 ⊇ · · · ⊇ PNL
⊇ X .

From (6), we can obtain the analytic center of Pn, denoted as
G̃

(n), which is explicitly given by [10]

2Note that for interval n = 1, it always holds that QL
1 ≥ QL

0 = 0, and
thus the one-bit feedback information is always f1 = −1, which does not
contain any useful information for localizing the target set X .

Table 1: ACCPM Based Channel Learning Algorithm
Algorithm I

1) Initialization: Set n = 0,QL
0 = 0, and SL

1 = P

MT
I .

2) Repeat:

a) n ← n + 1;
b) The ET transmits with SL

n
;

c) The ER feeds back fn = −1 (or 1) ifQL
n

≥ QL
n−1 (or otherwise);

d) The ET computes the query point G̃(n) given in (7);
e) The ET computes bn+1 from (10), obtainsBn+1 = smat(bn+1),
and updates SL

n+1 = S
L
n
+ Bn+1.

3) Until n ≥ NL.
4) The ET estimates G̃ = G̃

(NL) .

G̃
(n)

= arg min
0�Ḡ�I

− 2 log det
(
Ḡ
)
− 2 log det

(
I − Ḡ

)

−
n∑

i=2

log
(
−fitr

(
Ḡ

(
SL

i − SL
i−1

)))
, (7)

where det(·) denotes the determinant of a square matrix. Since the
problem in (7) can be shown to be convex, it can be solved by stan-
dard convex optimization techniques, e.g., CVX [11]. Notice that
G̃

(n) is the query point for the next feedback interval n+ 1.
Up to now, we have obtained the query point at each interval n,

G̃
(n−1), and the cutting plane given by (5) for ACCPM. To complete

our algorithm, we also need to ensure that the resulting cutting plane
is at least neutral given G̃

(n−1). This is equivalent to constructing
the transmit covariance SL

n’s such that
tr

(
G̃

(n−1)
(
S

L
n − S

L
n−1

))
= 0, n = 2, . . . , NL. (8)

We find such SL
n’s by setting SL

1 = P

MT
I for interval n = 1 and

S
L
n = S

L
n−1 +Bn (9)

for the remaining intervals n = 2, . . . , NL, whereBn ∈ C
MT×MT

is a probing matrix that is neither positive nor negative semi-definite
in general. With the above choice, finding a pair of SL

n and SL
n−1

to satisfy (8) is simplified to finding the probing matrixBn satisfy-
ing tr(G̃(n−1)

Bn) = 0, n = 2, . . . , NL. To find such a Bn for
the nth interval, we define a vector operation svec(·) that maps a
complex Hermitian matrixX ∈ C

m×m to a real vector svec(X) ∈
R

m2×1,m ≥ 1, with tr(XY ) = (svec(X))T svec(Y ) for any
given complex Hermitian matrix Y . Accordingly, we can ex-
press g̃(n−1) = svec

(
G̃

(n−1)
)
and bn = svec (Bn), where

g̃(n−1)T bn = tr(G̃
(n−1)

Bn) = 0. Due to the one-to-one mapping
of svec (·), findingBn is equivalent to finding bn that is orthogonal
to g̃(n−1). Define a projection matrix F n = I − g̃(n−1)g̃(n−1)T

‖g̃(n−1)
‖2

.

Then we can express F n = V nV
T
n , where V n ∈ R

M2
T
×(M2

T
−1)

satisfies V T
n g̃

(n−1) = 0 and V T
nV n = I . Thus, bn can be any

vector in the subspace spanned by V n. Specifically, we set
bn = V np, (10)

where p ∈ R
(M2

T
−1)×1 is a randomly generated vector in order to

make bn independently drawn from the subspace. With the obtained
bn, we have the probing matrix Bn = smat(bn),3 where smat(·)

3Note that Bn in general contains both positive and negative eigenval-
ues. As a result, the update in (9) may not necessarily yield an SL

n that
satisfies both tr(SL

n) ≤ P and SL
n � 0. Nevertheless, by setting ‖p‖ to

be sufficiently smaller than P , we can always find a p and its resulting SL
n

satisfying the above two conditions with only a few random trials. In this
paper we choose ‖p‖ = P/10.
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denotes the inverse operation of svec(·). Accordingly, SL
n that satis-

fies the neutral cutting plane in (8) is obtained.
To summarize, we present the ACCPM based channel learning

algorithm for MIMO WET with one-bit feedback in Table 1 as Al-
gorithm I. Note that in step 3) of the algorithm, the iteration termi-
nates after NL feedback intervals of the channel leaning phase, and
in step 4), the estimated G̃ is set as the analytic center of PNL

, i.e.,
G̃ = G̃

(NL). Accordingly, we can use the dominant eigenvector of
G̃ as the corresponding OEB ṽE for the energy transmission phase.

4. NUMERICAL EXAMPLES
In this section, we provide numerical examples to validate the per-
formance of our proposed channel learning algorithm in the point-
point MIMO WET system. We assume that the signal attenuation
from the ET to ER is 40 dB corresponding to a distance of 5 meter-
s. Given this transmission distance, the line-of-sight (LOS) signal
is dominant, and thus Rician fading is used to model the channel.
Furthermore, we assume Ts = 1 for convenience, and set P = 30
dBm (1Watt), η = 0.5,MT = 4 andMR = 2.

In Fig. 3, we show the convergence performance of the ACCPM
based channel learning algorithm with one-bit feedback as compared
to two existing algorithms. These two benchmark algorithms apply
the same one-bit feedback fn over each interval as in the proposed
algorithm whereas they use different methods instead of ACCPM to
design the transmit signals in the channel learning phase to estimate
the MIMO channel. Due to the page limitation, we introduce them
briefly as follows and their details can be found in [12, 13].

• Cyclic Jacobi Technique (CJT) based method [12]: This
method applies the CJT to update SL

n’s based on feedback
bit fn’s and perform a blind estimate of the EVD forG, i.e.,
G = V ΛV H . Specifically, the EVD is estimated via imple-
menting several Jacobi sweeps each of which corresponds to
a series of line searches each having the accuracy given by
η. After each Jacobi sweep, the ET can obtain an updated
approximation of V .

• Gradient sign method [13]: In this method, the ET sends on-
ly one energy beam per interval (i.e., SL

n, n = 1, . . . , NL,
are all of rank-one). Over each interval n, the ET adapts the
energy beam by either adding or subtracting a random pertur-
bation based on fn. The Euclidean norm of each generated
perturbation vector is termed step size.

In Fig. 3, we use the normalized error, given by λE−ṽH

E
GṽE

λE

, as
the performance metric, where ṽE denotes the OEB based on the
estimated MIMO channel in each algorithm. From this figure, it is
observed that the CJT based method results in discrete error points
corresponding to different values of η and different numbers of im-
plemented Jacobi sweeps. This is due to the fact that this method
can obtain an updated estimate of V only after each complete Ja-
cobi sweep over a certain number of feedback intervals. For the
gradient sign method, it is observed that a larger step size of 0.05
yields faster convergence but also more notable fluctuations as com-
pared to the case of smaller step size of 0.01. In contrast, ACCPM is
observed to achieve an exponentially decreasing error over the num-
ber of feedback intervals, and also significantly outperform the other
two algorithms.

Fig. 4 shows the average harvested power per block, i.e.,
Qtotal/T with Qtotal given in (3), over the block duration in N
(recall that N = T/Ts), where NL is chosen for each channel
learning algorithm to maximize the average harvested power with
each given N . For comparison, we also plot the harvested power,
Qmax/T , by the OEB assuming perfect CSI at the ET as a perfor-
mance upper bound, as well as that in the case without CSI at the
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ET by an isotropic transmission with S = P

MT

I as a performance
lower bound. For the three channel learning algorithms, namely the
ACCPM, CJT, and gradient sign, it is observed that as N increases,
the average harvested power increases to more closely approach the
performance upper bound by the OEB with perfect CSI. This is due
to the fact that with larger block duration, the MIMO channel can
be estimated more accurately but with smaller percentage of time in
each block. The proposed ACCPM based algorithm is observed to
achieve higher average harvested power than the other two schemes
of CJT and gradient sign. This is consistent with its best channel
learning performance as shown in Fig. 3.

5. CONCLUDING REMARKS
This paper proposed a new channel learning algorithm for the point-
to-point MIMOWET system. By requiring that the ER sends back to
the ET only one bit per feedback interval to indicate the increase or
decrease of its harvested energy, the ET is able to adjust the probing
energy beams over different intervals to estimate the MIMO channel
based on the method of ACCPM. It is hoped that this paper opens
an avenue for further investigation of new feedback techniques for
MIMO WET systems.

After the acceptance of this paper, the authors become aware
of one parallel work [14] that will be presented in the same confer-
ence. [14] considered the one-bit feedback based channel learning
in a point-to-point multiple-input single-output (MISO) system for
wireless communication (versus WET). Although the core idea of
using ACCPM for designing one-bit feedback based channel learn-
ing is essentially the same for the two papers, there are still sufficient
differences in the feedback and training signal designs due to inde-
pendent investigations.
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