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ABSTRACT

Optimal channel switching is proposed for average capacity

maximization in the presence of average and peak power

constraints. A necessary and sufficient condition is derived

in order to determine when the proposed optimal channel

switching approach can or cannot outperform the optimal

single channel approach, which performs no channel switch-

ing. Also, it is stated that the optimal channel switching

solution can be realized by channel switching between at

most two different channels. In addition, a low-complexity

optimization problem is derived in order to obtain the op-

timal channel switching solution. Numerical examples are

provided to exemplify the derived theoretical results.

Index Terms— Channel switching, capacity, time-sharing.

1. INTRODUCTION

Recently, benefits of randomization (or, time-sharing) have

been studied for various detection and estimation problems in

the literature [1]-[13]. For instance, in the context of noise

enhanced detection and estimation, an additive “noise” com-

ponent that is realized by a randomization among a certain

number of signal levels can be injected into the input of a

suboptimal detector or estimator for performance enhance-

ment [1]-[5]. Also, error performance of power constrained

communications systems that operate in non-Gaussian chan-

nels can be improved via stochastic signaling, which involves

modeling the signal values transmitted for each information

symbol as random variables [8, 9]. It is shown that an opti-

mal stochastic signal can be represented by a randomization

of no more than three different signal values under second and

fourth moment constraints [8].

Error performance of some communications systems that

operate over additive time-invariant noise channels can be en-

hanced via detector randomization, which involves the use

of multiple detectors at the receiver with certain probabilities

[3, 10, 14, 15, 16]. In [3], an average power constrained bi-

nary communication system is studied, and randomization be-

tween two antipodal signal pairs and the corresponding MAP

detectors is considered. Significant performance improve-

ments are reported as a result of detector randomization in the

presence of symmetric Gaussian mixture noise over a range of

average power constraint values. In [10], the results in [3] and

[9] are extended by considering an average power constrained

M -ary communications system that can employ both detector

randomization and stochastic signaling over an additive noise

channel with a known distribution. It is obtained that the joint

optimization of the transmitted signals and the detectors at the

receiver results in a randomization between at most two MAP

detectors corresponding to two deterministic signal constella-

tions.

In the presence of multiple channels between a transmit-

ter and a receiver, it may be advantageous to perform channel

switching; that is, to transmit over one channel for a certain

fraction of time, and then switch to another channel during

the next transmission period even if the channel statistics are

not varying with time [6, 17, 18, 19]. In [6], it is shown that

the optimum performance under an average power constraint

can be achieved by time sharing between no more than two

channels and power levels. In addition, [19] considers the

channel switching problem in the presence of stochastic sig-

naling, and obtains the optimal strategy, which can involve

either transmitting over a single channel with deterministic or

stochastic signaling, or channel switching between two chan-

nels with deterministic signaling.

Although the optimal channel switching problem is stud-

ied in [6] and [19] in terms of average probability of error

minimization, no studies in the literature have considered the

channel switching problem for capacity maximization. In this

study, we formulate the optimal channel switching problem

for capacity maximization under average and peak power con-

straints, and derive a necessary and sufficient condition for the

proposed channel switching approach to achieve a higher av-

erage capacity than the no channel switching approach. In

addition, it is stated that the optimal solution to the channel

switching problem results in channel switching between at

most two different channels, and an approach is proposed to

obtain the optimal channel switching strategy with low com-

putational complexity. Numerical examples are presented to

illustrate the theoretical results.

2. OPTIMAL CHANNEL SWITCHING

Consider a communications system in which a transmitter and

a receiver are connected via K different channels as shown in

Fig. 1. The channels are modeled as additive Gaussian noise

channels with possibly different bandwidths and noise lev-
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Fig. 1. Block diagram of a communication system in which

transmitter and receiver can switch between K channels.

els. The transmitter and the receiver can switch or time-share

among these K channels to improve the capacity of the com-

munications system. A relay at the transmitter controls access

to the channels in such a way that only one of the channels can

be employed for symbol transmission at any given time. The

transmitter and the receiver are assumed to be synchronized

so that the receiver knows which channel is being utilized.

In practice, this assumption can be realized by employing a

communication protocol that allocates the first Ns,1 symbols

in the payload for channel 1, the next Ns,2 symbols in the

payload for channel 2, and so on. The information on the

number of symbols for different channels can be included in

the header of a communications packet [10, 19].

A motivating example for a system as in Fig. 1 is a cogni-

tive radio system, in which secondary users can utilize mul-

tiple available frequency bands in the spectrum [20, 21]. In

such a scenario, optimal channel switching investigated in this

study can be employed in order to maximize the average ca-

pacity of secondary users. The proposed system has also the

potential to improve capacity in emerging open-access K-tier

heterogeneous wireless networks [22, 23].

Let Bi and Ni/2 denote, respectively, the bandwidth and

the constant power spectral density level of the additive Gaus-

sian noise corresponding to channel i for i ∈ {1, . . . ,K}.

Then, the capacity of channel i can be expressed as

Ci(P ) = Bi log2

(

1 +
P

NiBi

)

bits/sec (1)

where P denotes the average transmit power [24].

In this study, the aim is to obtain the optimal channel

switching strategy that maximizes the average capacity of

the communication system in Fig. 1 under average and peak

power constraints. In order to formulate such a problem,

we first define λ1, . . . , λK as the channel switching (time-

sharing) factors, where λi is the fraction of time when chan-

nel i is used, with λi ≥ 0 for i = 1, . . . ,K, and
∑K

i=1 λi = 1.

Then, we propose the following optimal channel switching

problem for capacity maximization:

max
{λi,Pi}K

i=1

K
∑

i=1

λi Ci(Pi) (2)

subject to

K
∑

i=1

λiPi ≤ Pav , Pi ∈ [0, Ppk] , ∀i ∈ {1, . . . ,K}

K
∑

i=1

λi = 1 , λi ≥ 0 , ∀i ∈ {1, . . . ,K}

where Ci(Pi) is as defined in (1) with Pi being the average

transmit power allocated to channel i, Ppk denotes the peak

power constraint, and Pav is the average power constraint for

the transmitter. It is assumed that Pav < Ppk.

In general, it can be challenging to obtain the optimal

channel switching strategy by directly solving the optimiza-

tion problem in (2). Therefore, we first try to obtain a sim-

pler version of (2), which leads to the same optimal channel

switching solution. To that aim, the following proposition

presents an alternative optimization problem, the solution of

which achieves the same maximum average capacity as (2).

(The proofs of the propositions are not presented due to the

space limitation.)

Proposition 1: The solution of the following optimization

problem results in the same maximum value as the one in (2):

max
{νi,Pi}K

i=1

K
∑

i=1

νi Cmax(Pi) (3)

subject to

K
∑

i=1

νiPi ≤ Pav , Pi ∈ [0, Ppk] , ∀i ∈ {1, . . . ,K}

K
∑

i=1

νi = 1 , νi ≥ 0 , ∀i ∈ {1, . . . ,K}

where Cmax(P ) is defined as

Cmax(P ) = max{C1(P ), . . . , CK(P )} . (4)

The importance of Proposition 1 is related to the fact that

the alternative optimization problem in (3), which achieves

the same maximum average capacity as the original problem

in (2), facilitates detailed theoretical investigation of the opti-

mal channel switching strategy, as discussed in the following.

In order to investigate the improvements that can be

achieved via channel switching, the case of no channel

switching is considered as a reference algorithm. In the ab-

sence of channel switching, the best channel is selected and

all the available transmit power is used over that channel. In

that case, the achieved maximum capacity can be expressed

as Cmax(Pav), where Cmax is as defined in (4), and the best

channel is the one with the index arg maxl∈{1,...,K} Cl(Pav).
(In the case of multiple best channels, any of them can be
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chosen to achieve Cmax(Pav).)
1 This approach is called the

optimal single channel algorithm in the following.

In the next proposition, a necessary and sufficient condi-

tion is presented for the optimal channel switching approach

to have the same performance as the optimal single channel

algorithm.

Proposition 2: Assume that Cmax(P ) in (4) is first-order

continuously differentiable in an interval around Pav. Then,

the optimal channel switching and the optimal single chan-

nel algorithms achieve the same maximum average capacity

if and only if

(x− Pav)
Bi∗ log2 e

Ni∗Bi∗ + Pav
≥ Cmax(x)− Cmax(Pav) (5)

for all x ∈ [0, Ppk], where i∗ = arg maxi∈{1,...,K} Ci(Pav).
Based on Proposition 2, it can be determined whether

channel switching can improve the average capacity of the

system compared to the no channel switching case. For ex-

ample, if the condition in (5) is satisfied for all x ∈ [0, Ppk]
in a given system, then it is concluded that the optimal sin-

gle channel algorithm has the same performance as the opti-

mal channel switching algorithm; that is, there is no need for

channel switching. In that case, the maximum average chan-

nel capacity is obtained as Cmax(Pav). On the other hand,

if there exist some x ∈ [0, Ppk] for which the condition in

(5) is not satisfied, then the optimal channel switching algo-

rithm is guaranteed to achieve a higher average capacity than

Cmax(Pav).
In Proposition 2, it is assumed that Cmax(P ) in (4) is first-

order continuously differentiable in an interval around Pav. If

this condition is not satisfied, then it is guaranteed that perfor-

mance improvements can be obtained via channel switching,

as stated in the following proposition.

Proposition 3: If the first-order derivative of Cmax(P ) in

(4) is discontinuous at P = Pav, then the optimal channel

switching algorithm outperforms the optimal single channel

algorithm.

When the optimal channel switching algorithm is guar-

anteed to achieve a higher average capacity than the optimal

single channel algorithm (which can be deduced from Propo-

sition 2 or Proposition 3), the optimization problem in (2) or

(3) needs to be solved in order to calculate the maximum av-

erage capacity of the system, which involves a search over a

2K dimensional space. However, the following proposition

states that the optimal solution can be obtained by switching

between no more than two different channels, and the result-

ing optimal strategy can be found via a search over a two-

dimensional space.

Proposition 4: The optimal solution of (2) results

in channel switching between at most two channels, and

the maximum average capacity achieved is calculated as

λ∗Cmax(P
∗
1 )+(1−λ∗)Cmax(P

∗
2 ), where P ∗

1 and P ∗
2 are the

1From (1) and (4), it can be shown that Cmax(P ) is a monotone increas-

ing and continuous function of P . Hence, when a single channel is used (i.e.,

no channel switching), it is optimal to utilize all the available power, Pav .

solutions of the following problem:

max
P1∈(Pav,Ppk]

P2∈[0,Pav]

Pav − P2

P1 − P2
Cmax(P1) +

P1 − Pav

P1 − P2
Cmax(P2) (6)

and λ∗ is given by λ∗ = (Pav − P ∗
2 )/(P

∗
1 − P ∗

2 ).
Once λ∗, P ∗

1 , and P ∗
2 are obtained as in Proposition 4, the

optimal channel switching strategy can be specified as fol-

lows: Switch between channel i and channel j with channel

switching (time-sharing) factors of λ∗ and 1 − λ∗, respec-

tively, where

i = arg max
l∈{1,...,K}

Cl(P
∗
1 ) (7)

j = arg max
l∈{1,...,K}

Cl(P
∗
2 ) . (8)

Overall, the solution of the proposed optimal chan-

nel switching problem can be obtained as follows: First,

Cmax(P ) in (4) is calculated for the given system parameters.

If the first-order derivative of Cmax(P ) is continuous at Pav

and the condition in Proposition 2 is satisfied, then there is

no need for channel switching (i.e., the single channel ap-

proach is optimal). Otherwise, the optimal solution involves

time-sharing between two channels, which can be obtained

as described in the previous paragraph and Proposition 4.

When the single channel approach is optimal, the optimal

solution of (2) can be expressed as λi∗ = 1, Pi∗ = Pav,

and λj = Pj = 0 for all j ∈ {1, . . . ,K}\{i∗}, where

i∗ = arg maxi∈{1,...,K} Ci(Pav). In that case, the maximum

average capacity becomes Cmax(Pav).
It should be noted that the computational complexity of

the optimization problem in (6) depends on the number of

channels, K, only through Cmax in (4), and the dimension

of the search space is always two irrespective of the number

of channels. Therefore, Proposition 4 can provide a signifi-

cant simplification of the original formulation in (2), which

requires a search over a 2K dimensional space.

3. NUMERICAL RESULTS

In this section, numerical examples are presented in order to

investigate the proposed optimal channel switching approach

and to compare it against the optimal single channel approach.

Consider a scenario with K = 3 channels with the follow-

ing bandwidths and noise levels (see (1)): B1 = 1MHz,

B2 = 5MHz, B3 = 10MHz, N1 = 10−12 W/Hz, N2 =
10−11 W/Hz, and N3 = 10−11 W/Hz. Assume that the peak

power constraint in (2) is set to Ppk = 0.1mW. In Fig 2,

the capacity of each channel is plotted as a function of power

based on the capacity expression in (1).

In Fig. 3, the performance of the proposed optimal

channel switching algorithm is compared against that of

the optimal single channel algorithm. As discussed in

the previous section, the optimal single channel algorithm

achieves a capacity of Cmax(Pav), which is Cmax(Pav) =
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Fig. 2. Capacity of each channel versus power.

max{C1(Pav), C2(Pav), C3(Pav)} in the considered sce-

nario. It is noted from Fig 2 and Fig. 3 that Cmax(Pav) =
C1(Pav) for Pav ∈ (0, 0.048)mW and Cmax(Pav) = C3(Pav)
for Pav ∈ [0.048, 0.1]mW; that is, channel 1 is the best chan-

nel up to Pav = 0.048mW, and channel 3 is the best after that

power level. From Fig. 3, it is also observed that the proposed

optimal channel switching algorithm outperforms the op-

timal single channel algorithm for Pav ∈ [0.02, 0.1]mW,

and the two algorithms have the same performance for

Pav < 0.02mW. These regions can also be obtained by

checking the necessary and sufficient condition in Proposi-

tion 2 (see (5)), which is satisfied for all x ∈ [0, 0.1]mW for

Pav < 0.02mW, and is not satisfied for some x ∈ [0, 0.1]mW

for Pav ∈ [0.02, 0.1]mW .2 Also, in accordance with Propo-

sition 3, it is observed that the optimal channel switching

algorithm outperforms the optimal single channel algorithm

at Pav = 0.048mW, which corresponds to a discontinuity

point for the first-order derivative of Cmax(P ).
In order to provide a detailed investigation of the opti-

mal channel switching strategy, Table 1 presents the optimal

channel switching solutions for various values of Pav. As in

(6)-(8), the optimal solution is represented by parameters λ∗,

P ∗
1 , P ∗

2 , i, and j, meaning that channel i is used with chan-

nel switching factor λ∗ and power P ∗
1 and channel j is used

with channel switching factor 1 − λ∗ and power P ∗
2 . From

the table, it is observed that the optimal solution reduces to

the optimal single channel solution for Pav = 0.01mW (in

which case channel 1 is used all the time), and it involves

switching (“randomization”) between channel 1 and channel

3 for larger values of Pav. This observation is also consis-

tent with Fig. 3, which illustrates improvement via channel

switching for Pav > 0.02mW.

Based on this numerical example, an intuitive explana-

tion can be provided about the benefits of channel switch-

ing and why the optimal channel switching strategy involves

2The details of the calculations are not shown due to the space limitation.
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Pav (mW) λ∗ P ∗
1 i (1− λ∗) P ∗

2 j
0.01 1 0.01 1 − − −
0.03 0.871 0.02 1 0.129 0.1 3

0.05 0.622 0.02 1 0.378 0.1 3

0.07 0.373 0.02 1 0.627 0.1 3

0.09 0.124 0.02 1 0.876 0.1 3

Table 1. Optimal channel switching strategy, which employs

channel i for 100λ∗ percent of time with power P ∗
1 , and chan-

nel j for 100(1− λ∗) percent of time with power P ∗
2 .

switching between no more than two channels. In the ab-

sence of channel switching, the optimal capacity is given by

Cmax(Pav), whereas via channel switching, the upper bound-

ary of the convex hull of Cmax(Pav) can also be achieved (see

Fig. 3). Since the upper boundary of the convex hull is always

formed by a convex combination of two different points, no

more than two different channels are needed to achieve the

optimal capacity.

4. CONCLUDING REMARKS

In this study, optimal channel switching has been proposed for

average capacity maximization in the presence of average and

peak power constraints. A necessary and sufficient condition

has been derived for specifying whether the proposed optimal

channel switching approach can or cannot outperform the op-

timal single channel approach. In addition, the optimal chan-

nel switching solution has been shown to be realized by chan-

nel switching between at most two different channels, and a

low-complexity optimization problem has been obtained to

calculate the optimal channel switching solution. Numeri-

cal examples have been presented and intuitive explanations

about the benefits of channel switching have been provided.
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