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ABSTRACT

Transmission power variance constrained power allocation in single

carrier multiuser (MU) single-input multiple-output (SIMO) systems

with iterative frequency domain (FD) soft cancelation (SC) mini-

mum mean squared error (MMSE) equalization is considered in this

paper. It is known in the literature that peak to average power ratio

(PAPR) at the transmitter can be decreased by reducing the vari-

ance of the transmit power. In this paper, we derive a power vari-

ance constraint to statistically control the PAPR. This constraint is

plugged into a convergence constrained power allocation (CCPA)

problem and successive convex approximation (SCA) approach via

series of geometric programs (GP) is developed. Numerical results

are presented in the form of complementary cumulative distribution

functions (CCDFs) to demonstrate the effectiveness of the proposed

method.

Index Terms— Single carrier, EXIT chart, convergence con-

straint, geometric program, convex optimization

1. INTRODUCTION

The use of frequency division multiplexing via discrete Fourier

transform (DFT) causes a high peak-to-average power ratio (PAPR),

which necessitates expensive and power-inefficient radio-frequency

(RF) components at the transmitter. Recent work on minimiz-

ing the PAPR in single carrier frequency division multiple access

(FDMA) [1] transmission can be found in [2–4], where they propose

different precoding methods for PAPR reduction. However, these

methods do not take into account the transmit power allocation, the

channel nor the receiver. PAPR-aware large-scale multiuser (MU)

multiple-input multiple-output (MIMO) orthogonal frequency divi-

sion multiplexing (OFDM) downlink is investigated in [5] where

they assume the massive degrees-of-freedom available to achieve

low PAPR.

To exploit the full merit of iterative receiver, the convergence

properties of an iterative receiver needs to be taken into account

at the transmitter side. This issue has been thoroughly investigated

in [6] where the power allocation to different channels is optimized

subject to a quality of service (QoS) constraint taking into account

the convergence properties of iterative frequncy domain (FD) soft
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cancelation (SC) minimum mean squared error (MMSE) MIMO re-

ceiver. The convergence properties were examined by using extrinsic

information transfer (EXIT) charts [7]. The concept in [6] has been

extended for MU systems in [8, 9]. In this paper, we will introduce

a power variance constraint for the convergence constrained power

allocation (CCPA) problem presented in [9]. In other words, we will

minimize the total transmit power in a cell with multiple users while

guaranteeing the desired QoS in terms of bit error probability (BEP)

and keeping the transmit power variance always below the desired

value. The power allocation presented in this paper requires cen-

tralized design, i.e., the base station reports the power allocations to

each user. Development towards distributed solution is left as future

work.

The main contributions of this paper are summarized as follows:

The expected power variance of the transmitted waveform is derived

as a function of power allocation. The main reason for controlling

the expected power variance is that it is not depending on the trans-

mitted symbol sequence unlike instant PAPR. Hence, a variance con-

straint is derived and a local convex approximation of the constraint

is formulated via geometric program (GP) [10]. The constraint is

plugged in to a CCPA problem and solved by successive convex ap-

proximation (SCA) algorithm [11].

2. SYSTEM MODEL

Consider a single carrier uplink transmission with U single-antenna

users and a base station with NR antennas as depicted in Fig. 1.

Each user’s data stream is encoded by forward error correction code

(FEC) Cu, u = 1, 2, . . . , U . The encoded bits are bit interleaved

and mapped onto a 2NQ -ary complex symbol, where NQ denotes

the number of bits per modulation symbol. After the modulation,

each user’s data stream is transformed into the frequency domain by

performing the discrete Fourier transform (DFT) and multiplied with

its associated power allocation matrix. Finally, before transmission,

each user’s data stream is transformed into the time domain by the

inverse DFT (IDFT) and a cyclic prefix is added to mitigate inter

block interference (IBI).

At the receiver side, after the cyclic prefix removal, the signal

can be expressed as

r = HuF
−1

P

1
2
u Fb

u +

U
∑

y=1
y 6=u

HyF
−1

P

1
2
y Fb

y + v, (1)

where Hu = [H1
u,H

2
u, . . . ,H

NR
u ]T ∈ C

NRNF×NF is the space-

time channel matrix for user u and H
r
u =
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Fig. 1. The block diagram of the transmitter side of the system

model.

circ{[hr
u,1, h

r
u,2, . . . , h

r
u,NL

,01×NF−NL
]T} ∈ C

NF×NF is the

time domain circulant channel matrix for user u at the receive an-

tenna r. The operator circ{} generates matrix that has a circulant

structure of its argument vector and NL denotes the length of the

channel impulse response. F ∈ C
NF ×NF denotes the DFT ma-

trix with elements fm,l = 1√
NF

exp(i2π(m − 1)(l − 1)/NF ).

P ∈ R
UNF ×UNF is the power allocation matrix denoted as P =

diag(P1,P2, . . . ,PU ) with Pu = diag([Pu,1, Pu,2, . . . , Pu,NF
]T) ∈

R
NF ×NF , u = 1, 2, . . . , U , and b = [b1T

,b2T
, . . . ,bU T

]T.

b
u ∈ C

NF , u = 1, 2, . . . , U , is the modulated complex data

vector for the uth user and v ∈ C
NF is white additive independent

identically distributed (i.i.d.) Gaussian noise vector with variance

σ2
v .

3. CONVERGENCE CONSTRAINT

In this section, we will present some of the most important equations

related to CCPA. For more details, reader may refer to [6, 8, 9]. The

convergence constraint can be expressed as LLR variance constraint

as [6, 8, 9]

σ̂2
u,k ≥ σ̊2

u,k, ∀u = 1, 2 . . . , U, ∀k = 1, 2, . . . ,K. (2)

where σ̂2
u,k and σ̊2

u,k is the variance of the LLRs at the output of the

equalizer and at the input of the decoder, respectively, for uth user

at the kth sample point in the EXIT chart. σ̊2
u,k is obtained through

diagonal sampling [9]. When Gray-mapped quadrature phase shift

keying (QPSK) modulation is used, the variance of the LLRs at the

output of the equalizer can be expressed as [6, Eq. (17)]

σ̂2
u,k =

4ζu,k
1− ζu,k∆̄u,k

, (3)

where ζu,k in (3) is called as the effective SINR of the prior symbol

estimates and is given by [9]

ζu,k =
1

NF

NF
∑

m=1

Pu,m|ωk
u,m

H
γu,m|2

U
∑

l=1

Pl,m|ωk
u,m

H
γl,m|2∆̄u,k + ||ωk

u,m
H||2σ2

v

,

(4)

where γu,m ∈ C
NR is the channel vector for mth frequency bin

of user u. ω
k
u,m ∈ C

NR is the receive beamforming vector for

mth frequency bin of user u at MI index k and it can be optimally

calculated as [12]

ω
k
u,m = (

U
∑

l=1

Pl,mγl,mγ
H
l,m∆̄l,k + σ2

vINR
)−1

γu,mP
1
2
u,m. (5)

∆̄u,k ∈ R is the average residual interference of the soft symbol

estimates and is given by

∆̄u,k = avg{1NF
− b̈

u}, (6)

where b̈
u = [|b̃u1 |2, |b̃u2 |2, . . . , |b̃uNF

|2]T ∈ C
NF . The soft symbol

estimate b̃un is calculated as

b̃un = E{bun} =
∑

bi∈B

bi Pr(b
u
n = bi), (7)

where B is the modulation symbol alphabet, and the symbol a priori

probability can be calculated by

Pr(bun = bi) =
(1

2

)NQ

NQ
∏

q=1

(1− z̄i,q tanh(λ
u
n,q/2)), (8)

with z̄i,q = 2zi,q − 1 and zi = [zi,1, zi,2, . . . , zi,NQ
]T is the bi-

nary representation of the symbol bi, depending on the modulation

mapping. λu
n,q is the a priori LLR of the bit cun,q , provided by the

decoder of user u. Plugging (3) and (4) into (2), the convergence

constraint can be written as [9]

ζu,k ≥ ξu,k, ∀u = 1, 2 . . . , U,∀k = 1, 2, . . . ,K, (9)

where

ξu,k =
(̊σu,k)

2

4 + (̊σu,k)2∆̄u,k

(10)

is constant.

4. POWER VARIANCE CONSTRAINT

Instead of considering the instant PAPR, we will derive the expected

variance of the transmit power which is not depending on the instan-

taneous symbol sequence. Because the power variance is derived

similarly for all the users, the user index is omitted in this section.

Let G = F
−1

P
1
2F. The entry (m,n) of G is obtained as

gm,n =
1

NF

NF
∑

l=1

√
Ple

j2π(l−1)(n−m)
NF . (11)

Let sm be the mth output of the transmitted waveform after the IFFT

as depicted in Fig. 1. Assuming E{|bn|} = 1 and E{bpb∗q} = 0,

∀p 6= q, where b∗q denotes the complex conjugate of bq , the average

of the transmit power can be calculated as

µ = avg[|sm|2] = 1

NF

NF
∑

m=1

E

{

[|sm|2]
}

=
1

NF

NF
∑

l=1

Pl. (12)

The variance of the output power is given by

Σ2(P) =
1

NF

NF
∑

k=1

(E[|sk|4]− µ2)

=
1

NF

NF
∑

k=1

[2(

NF
∑

m=1

|gk,m|2)2 −
NF
∑

m=1

|gk,m|4]− µ2. (13)

The first term reduces to

1

NF

NF
∑

k=1

(

NF
∑

m=1

|gk,m|2)2 = µ2. (14)
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The second term can be expressed as a function of power allocation

as

1

NF

NF
∑

k=1

NF
∑

m=1

|gk,m|4

=
µ2

NF

+
1

N3
F

NF
∑

p,q∈S1

PpPq +
1

N3
F

NF
∑

p,q,r,s∈S2

√

PpPqPrPs, (15)

where S1 = {p, q ∈ {1, 2, . . . , NF } : p 6= q, p − q = ±NF /2}
and S2 = {p, q, r, s ∈ {1, 2, . . . , NF } : p 6= q, r 6= s, (p, q) 6=
(r, s), s− r ∈ {p− q,NF + p− q,−NF + p− q}}. Substituting

(14) and (15) to (13) we get

Σ2(P) =
NF − 1

N3
F

(

NF
∑

l=1

Pl)
2 − 1

N3
F

NF
∑

p,q∈S1

PpPq−

1

N3
F

NF
∑

p,q,r,s∈S2

√

PpPqPrPs. (16)

The objective is to control the variance of the normalized power and

hence Pl in (16) is divided by
∑NF

n=1 Pn, ∀l, resulting in

Σ2(P) ≤ σ2
s(

NF
∑

l=1

Pl)
2, (17)

where σ2
s ∈ R

+ is the maximum variance of the normalized power.

Plugging (16) to (17) the constraint can be written as

(NF − 1)(

NF
∑

l=1

Pl)
2 ≤

NF
∑

p,q∈S1

PpPq+

NF
∑

p,q,r,s∈S2

√

PpPqPrPs + (

NF
∑

l=1

Pl)
2σ2

sN
3
F . (18)

5. SUCCESSIVE CONVEX APPROXIMATION

Our objective is to minimize the total transmitted power with the

constraints (9) and (18). Hence, the objective is linear but both (9)

and (18), are nonconvex constraints. However, we can derive a suc-

cessive convex approximation for the problem via GP using the in-

equality [9]
NF
∑

m=1

tm ≥
NF
∏

m=1

(
tm
Φm

)Φm , (21)

where Φm = t̂m
∑NF

n=1 t̂n
, t̂m > 0, and tm > 0, m = 1, 2, . . . , NF .

Reader should be notified that GP is not convex as such but it can be

reformulated as a convex problem [10].

The constraint (9) can be equivalently written as [9]

1

NF

NF
∑

n=1

tku,n ≥ ξu,k, u = 1, 2, . . . , U, k = 1, 2, . . . ,K,

Pu,m|ωk
u,m

H
γu,m|2 ≥

(
U
∑

l=1

Pl,m|ωk
u,m

H
γl,m|2∆̄l,k + ||ωk

u,m

H||2σ2
v)t

k
u,m,

u = 1, 2 . . . , U, ∀k = 1, 2, . . . ,K,m = 1, 2, . . . , NF . (22)

Applying (21) to the first part of (22) yields [9]

NF
∏

n=1

(
tku,n
Φk

u,n

)Φ
k
u,n ≥ NF ξu,k, u = 1, 2, . . . , U, k = 1, 2, . . . ,K,

Pu,m|ωk
u,m

H
γu,m|2 ≥

(

U
∑

l=1

Pl,m|ωk
u,m

H
γl,m|2∆̄l,k + σ2

v|ωk
u,m|2)tku,m,

u = 1, 2, . . . , U, k = 1, 2, . . . ,K,m = 1, 2, . . . , NF , (23)

which is a valid GP constraint.

Similarly, applying (21) two times to the RHS of (18) yields a

constraint (19) given on the top of next page, where the weights τ
(1)
u ,

τ
(2)
u , τ

(3)
u and τ

(4)
u are given in (20) and

θ(1)u,pq =
Pu,pPu,q

∑

p′,q′∈S1
Pu,p′Pu,q′

,

θ(2)u,pqrs =

√

Pu,pPu,qPu,rPu,s
∑

p′,q′,r′,s′∈S2

√

Pu,p′Pu,q′Pu,r′Pu,s′
,

θ
(3)
u,l =

P 2
u,l

∑NF

l′=1 P
2
u,l′

, θ
(4)
u,l =

Pu,pPu,q
∑NF

p′,q′=1
q′>p′

Pu,p′Pu,q′

. (24)

A successive convex approximation of both the convergence and

power variance constrained power minimization problem can be

written as

minimize
P,t

tr{P}

subject to
∏NF

n=1(
tku,n

Φk
u,n

)Φ
k
u,n ≥ NF ξu,k,

u = 1, 2, . . . , U, k = 1, 2, . . . ,K,

Pu,m|ωk
u,m

H
γu,m|2 ≥

(
∑U

l=1 Pl,m|ωk
u,m

H
γl,m|2∆̄l,k + σ2|ωk

u,m|2)tku,m,
u = 1, 2, . . . , U, k = 1, 2, . . . ,K,
m = 1, 2, . . . , NF ,

(NF − 1)(
∑NF

l=1 Pu,l)
2 ≤ Au(Pu), u = 1, 2, . . . , U,

Pu,m ≥ 0, u = 1, 2, . . . , U,m = 1, 2, . . . , NF ,
(25)

where Au(Pu) denotes the RHS of (19). The SCA algorithm is

summarized in Algorithm 1, where the superscript ∗ denotes the

optimal solution of (25). Due to the inequality (21), the monomial

approximation is never above the approximated summation1. Hence,

Algorithm 1 is guaranteed to monotonically converge to a locally

optimal solution.

Algorithm 1 Successive convex approximation algorithm.

1: Set t̂ku,n = t̂
k(0)
u,n , ∀u, k, n and P̂u,n = P̂

(0)
u,n, ∀u, n.

2: repeat

3: Calculate the weights (24) and (20).

4: Solve Eq. (25).

5: Update t̂ku,n = t
k(∗)
u,n , ∀u, k, n and P̂u,n = P̂

(∗)
u,n, ∀u, n.

6: until Convergence.

6. NUMERICAL RESULTS

In this section, numerical results are shown to demonstrate the per-

formance of the proposed algorithm. SCA presented in Section 5

1By projecting the optimal solution from the approximated problem (25)
to the original constraint functions (9) and (18) constraints become loose and
thus, the objective can always be reduced.
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(NF − 1)(

NF
∑

l=1

Pu,l)
2 ≤
(

∏

p,q∈S1

(

Pu,pPu,q

θ
(1)
u,pq

)θ
(1)
u,pq

τ
(1)
u

)τ
(1)
u
(

∏

p,q,r,s∈S2

(

√
Pu,pPu,qPu,rPu,s

θ
(2)
u,pqrs

)θ
(2)
u,pqrs

τ
(2)
u

)τ
(2)
u

×
(σ2N3

F

∏NF

l=1

(

P2
u,l

θ
(3)
u,l

)θ
(3)
u,l

τ
(3)
u

)τ
(3)
u
(2σ2

sN
3
F

∏NF
p,q=1
q>p

(

Pu,pPu,q

θ
(4)
u,pq

)θ
(4)
u,pq

τ
(4)
u

)τ
(4)
u

(19)

τ (1)
u =

∑

p,q∈S1
Pu,pPu,q

∑

p,q∈S1
Pu,pPu,q +

∑

p,q,r,s∈S2

√

Pu,pPu,qPu,rPu,s + (
∑NF

l=1 Pu,l)2σ2
sN

3
F

τ (2)
u =

∑

p,q,r,s∈S2

√

Pu,pPu,qPu,rPu,s

∑

p,q∈S1
Pu,pPu,q +

∑

p,q,r,s∈S2

√

Pu,pPu,qPu,rPu,s + (
∑NF

l=1 Pu,l)2σ2
sN

3
F

τ
(3)
3 =

σ2
sN

3
F

∑NF

l=1 P
2
u,l

∑

p,q∈S1
Pu,pPu,q +

∑

p,q,r,s∈S2

√

Pu,pPu,qPu,rPu,s + (
∑NF

l=1 Pu,l)2σ2
sN

3
F

τ (4)
u =

2σ2
sN

3
F

∑NF
p,q=1
q>p

Pu,pPu,q

∑

p,q∈S1
Pu,pPu,q +

∑

p,q,r,s∈S2

√

Pu,pPu,qPu,rPu,s + (
∑NF

l=1 Pu,l)2σ2
sN

3
F

. (20)

was derived for fixed receiver. The joint optimum can be achieved

via alternating optimization [9] which means that the problem is split

to the optimization of transmit power for fixed receiver and optimiza-

tion of receiver for fixed power allocation. Alternating between these

two optimization steps converges to a local solution.

The following parameters is used in simulations: U = 2, NR =
2, NF = 82, QPSK with Gray mapping, and systematic repeat accu-

mulate (RA) code [13] with a code rate 1/3 and 8 internal iterations

are used. The signal-to-noise ratio per receiver antenna averaged

over frequency bins is defined by SNR= tr{P}/(NRNFσ
2
v). The

channel we consider is a quasi-static Rayleigh fading 5-path average

equal gain channel. PAPR is defined as

PAPR =
maxm |sm|2
avg[|sm|2] . (26)

The complementary cumulative distribution function (CCDF) of

PAPR for user 2 for different values of σ2
s is depicted in Fig. 2.

CCDF is calculated such that 105 randomly generated symbol se-

quences of length NF for each user is sent over 200 channel real-

izations. It can be seen from the Fig. 2 that when σ2
s = 0.1 there

is not much difference compared to the case where there is no vari-

ance constraint. When σ2
s = 0.01 we can obtain a slight PAPR gain

with roughly the same SNR compared to the case with no variance

constraint. When σ2
s is further reduced to 0.001 the PAPR gain is

significant. Even though the required SNR to achieve the target MI

point increases 1.6 dB, the PAPR gain is much larger than the SNR

loss. For example, in the case of no normalized variance constraint

we may need to set the maximum transmission power according to 8

dB PAPR while in the case of σ2
s = 0.001 the PAPR corresponding

the same value of CCDF (10−4.74) is 3.06 dB. Hence, for 10−4.74

outage the gain is 8 dB - 3.06 dB - 1.6 dB = 3.34 dB. Therefore, the

2The results would be similar with higher NF . NF is set rather small
to speed up the simulations. In practise, an efficient problem specific solver
would be implemented which is fast even with large NF .

0 1 2 3 4 5 6 7 8 9

10
−4

10
−3

10
−2

10
−1

10
0

PAPR (dB)

C
C

D
F

No var. constr., 

 SNR=5.82 dB

σ
s

2
=0.1,

 SNR=5.96 dB

σ
s

2
=0.01,

 SNR=5.97 dB

σ
s

2
=0.001,

 SNR=7.42 dB

Fig. 2. CCDF of PAPR for user 2. U = 2, NF = 8, NR = 2,

ÎE,target
u = 0.7892, u = 1, 2, I̊E,target

u = 0.9998, ∀u, ǫu = 0.01, ∀u,

NL = 5.

coverage of σ2
s = 0.001 precoded transmission is larger compared

to the case with no variance constraint.

7. CONCLUSIONS

Transmission power variance constrained power allocation for itera-

tive frequency domain multiuser single input multiple output detec-

tor was derived in this paper. The precoding technique takes into

account the convergence properties of the iterative receiver while

keeping the transmission power variance below the desired thresh-

old. Successive convex approximation (SCA) approach via series of

geometric programs (GP) is developed. Numerical results demon-

strated that the PAPR gain is significantly larger than the SNR loss in

the variance constrained precoding technique compared to the case

without variance constraint. Hence, the proposed precoding tech-

nique increases the coverage of the transmission and is beneficial for

power limited cell edge users.
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