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ABSTRACT

In this paper we consider variable-rate transmission for
time-correlated MIMO (multi-input multi-output) channels
with limited feedback. The number of bits loaded on each
subchannel of the MIMO system is dynamically assigned
according to the current channel condition and fed back to
the transmitter. As the channel is time-correlated, so is bit
loading. We propose to feedback bit loading using predic-
tive coding, which is known to be a powerful technique for
quantizing correlated signals. Assuming the channel is a
first-order Gauss-Markov random process, we derive the op-
timal predictor for the bit loading to be coded. We show that
the subchannels prediction errors are approximated Gaus-
sian and thus can be quantized using quantizers designed
for Gaussian random variables. Simulations demonstrate
that the proposed predictive coding can achieve a very good
approximation of the desired transmission rate with a very
low feedback rate.

1. INTRODUCTION

It has been shown that with limited amount of feedback in-
formation the performance of a transmission system can be
enhanced greatly. In general, the transmitter has no knowl-
edge of the forward link channel and only the receiver has
the channel state information. Various feedback schemes
have been proposed for the case when the transmission rate
is fixed. The feedback of precoder for spatial multiplexing
MIMO systems with a fixed transmission rate has been ex-
tensively investigated [1]. For fading channels, adapting
the transmission rate according to the channel state infor-
mation can lead to considerable gain over fixed-rate systems
[2]. Rate adaptation is also important for controlling frame
error rate or packet error rate without using deep interleav-
ing because we can adjust the rate for a given target error
rate [3]. MIMO systems with variable transmission rate
have been considered in the literature, e.g, [4], which uses
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beamforming for low-rate transmission and spatial multi-
plexing for a higher rate.

In practical transmission environments, a fading chan-
nel is usually correlated in time. When the channel is mod-
eled as a first-order Gauss-Markov random process [5], the
time correlation can be more directly exploited for analysis
or for more efficient feedback [6]-[8]. For a given quantiza-
tion error constraint, the minimum rate for feeding back dif-
ferential channel information is derived in [6]. The design
of polar-cap differential codebook is addressed in [7] for
beamforming systems. A feedback scheme that uses a dif-
ferential rotation of the precoder is proposed in [8]. Earlier
results that exploit the time correlation of the MIMO chan-
nel are all for fixed-rate transmission systems to the best of
our knowledge.

In this paper, we consider variable-rate transmission for
limited-feedback MIMO systems over time-correlated chan-
nels using predictive quantization of bit loading. The trans-
mission rate is adapted to the current channel condition by
assigning bits to the subchannels of the MIMO systems.
The bit loading is fed back using predictive quantization,
a scheme known to be very efficient for coding signals that
are correlated in time. Assuming the channel is modeled
by a first-order Gauss-Markov process, we derive the pre-
dictor of the bit loading to be coded when the channel is
varying slowly. Furthermore we show that the prediction
error is approximately Gaussian and can be quantized using
quantizers designed for a Gaussian source. Simulations are
presented to demonstrate that the proposed predictive cod-
ing of bit loading can achieve a very good approximation
of the desired transmission rate using a low feedback rate.
The sections are organized as follows. In Sec. 2, we give
the system model of the time-correlated MIMO system. In
Sec. 3., we present the proposed predictive quantization of
bit loading. Simulation examples are given in Sec. 4 and a
conclusion given in Sec. 5.

2. SYSTEM MODEL

Consider the wireless system with Mt transmit antennas and
Mr receive antennas in Fig. 1. At time n, the channel is
modeled by an Mr × Mt matrix Hn with Mr × 1 chan-
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Figure 1: A MIMO system with bit loading feedback.

nel noise qn and Mr ≥ Mt. A useful model of a time-
correlated channel is the first-order Gauss-Markov process
[5]

Hn =
√

1− ε2Hn−1 + εWn, (1)

where Wn is independent of Hn−1 and its entries are i.i.d.
complex Gaussian random variables with zero mean and
unit variance. The parameter ε is a coefficient that reflects
the Doppler effect of the channel. With Jakes’ model, ε =√

1− (J0(2πfdT ))
2, where J0(·) is the zeroth-order Bessel

function of the first kind, fd is the maximum Doppler fre-
quency, T denotes the time interval between consecutive
channel uses. We assume the channel is slow fading so
that the channel does not change during each channel use
and it is known to the receiver. We also assume a delay-free
feedback channel with limited transmission rate is available.
The noise vector qn is additive white Gaussian with zero
mean and variance N0.

The inputs of the channel as indicated in Fig. 1 are mod-
ulation symbols sn,k, for k = 0, 1, · · · ,Mt − 1, assumed to
be uncorrelated with zero mean and variance Pt/Mt, where
Pt is the total transmission power. The Mt ×Mr linear re-
ceiver Gn is zero forcing and Gn = (H†

nHn)−1H†
n [9],

where † denotes conjugate transpose. In this case, the re-
ceiver output error en = Gnqn has autocorrelation ma-
trix Rn = E[ene†n] given by Rn = N0(H†

nHn)−1. The
kth subchannel error variance at time n is σ2

en,k
= [Rn]kk.

When QAM modulation symbols are used, the number of
bits that can be loaded on the kth subchannel at time n is
[2]

bn,k = log2

(
1 +

Pt/(MtΓ)

σ2
en,k

)
, (2)

where Γ = − ln(5BER)/1.5 depends on the target bit er-
ror rate (BER). The number of bits transmitted at time n is
Rn =

∑M−1
k=0 bn,k.

3. PREDICTIVE QUANTIZATION OF BIT
LOADING

When the channel is time-correlated, we can expect the bit
loading to be time-correlated as well. For the predictive
quantization of bn,k, both the transmitter and receiver com-
pute a predicted value b̃n,k. Quantization is applied on the
prediction error δn,k = bn,k − b̃n,k and the quantized ver-
sion δ̂n,k is fed back to the transmitter. The transmitter re-
produces the quantized bit loading using b̂n,k = b̃n,k+ δ̂n,k.

In this case the quantization error bn,k − b̂n,k is the same as
δn,k − δ̂n,k. With judicious design, the prediction error has
a smaller variance than bn,k and a smaller quantization error
can be achieved as quantization error is proportional to the
variance of the signal to be quantized [10].

We first show how to predict the bit loading at time n
given the channel at time n − 1. Using the Gauss-Markov
channel model in (1), the bit loading at time n can be ap-
proximated as in the following lemma.

Lemma 1 For a small ε, the number of bits that can be
loaded on the kth subchannel at time n can be approximated
in terms of the bit loading at time n− 1 as

bn,k ≈ bn−1,k − ε

ln 2

[An]kk
σ2
en−1,k

, (3)where

An = − 1

N0
Rn−1(H

†
n−1Wn +W†

nHn−1)Rn−1 (4)

and [X]i,j denotes the (i, j)th entry of a matrix X.

Proof. We can rewrite Rn = N0(H†
nHn)−1 as Rn =

1
1−ε2Rn−1(I+E)−1, where

E =
(
ε
√

1− ε2(H†
n−1Wn +W†

nHn−1) + ε2W†
nWn

)

×
(
(1− ε2)H†

n−1Hn−1

)−1

and we have used Rn−1 = N0(H
†
n−1Hn−1)−1. It is known

that (page 301, [12]) when E satisfies ||E|| < 1, where
||E|| denotes a certain matrix norm of E, e.g., Frobenius
norm, then (I + E)−1 can be written as a power series∑∞

k=0(−1)kEk. We see that E has norm smaller than unity
when ε is sufficiently small. Using the approximation (I +
E)−1 ≈ I − E and ignoring higher-order terms of ε, we
have the approximation Rn ≈ Rn−1 + εAn. It follows
that the kth subchannel error variance at time n is given by
σ2
en,k ≈ σ2

en−1,k
+ ε[An]kk. Using this expression and (2)

we obtain

bn,k ≈ log2

(
σ2
en−1,k

+ ε[An]kk + Pt/(MtΓ)

σ2
en−1,k

+ ε[An]kk

)
.

When ε is small, we can approximate the numerator σ2
en−1,k

+

ε[An]kk + Pt/(MtΓ) as σ2
en−1,k

+ Pt/(MΓ). In this case
we can rearrange it as

bn,k ≈ − log2

(
σ2
en−1,k

σ2
en−1,k

+ Pt/(MΓ)

)
−log2

(
1 +

ε[An]kk
σ2
en−1,k

)
.
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We recognize the first term is equal to bn−1,k, the number
of bits loaded on the kth subchannel at time n − 1 in (2).
Using the Taylor series approximation of the second term at
ε = 0, we arrive at (3). %

We would like to design the predictor b̃n,k so that the
mean squared prediction error E[δ2n,k] is minimized. It is
known that [10], given the previous channel Hn−1, the best
predictor is the conditional mean, b̃optn,k = EWn [bn,k|Hn−1],
where EWn [x] denotes the expectation of a random vari-
able x averaged over the random matrix Wn. The result in
Lemma 1 leads to the following expression of the optimal
predictor,

b̃optn,k ≈ bn−1,k, (5)

where we have used the fact that the entries of Wn have
zero mean, and thus the conditional mean EWn [An|Hn−1] =
0. Although the optimal predictor is the condition mean
given the previous channel, it turns out to depend on the
previous bit loading only and is independent of ε. With the
optimal prediction, the prediction error is given by

δn,k ≈ − ε

ln 2

[An]kk
σ2
en−1,k

. (6)

Observe that the entries of An are Gaussian. Thus δn,k is
approximately Gaussian and can be quantized using quan-
tizers designed for Gaussian sources [11]. For the quanti-
zation of Gaussian random variables, the optimal quantizer
is well known [11]. Note that the prediction error is in the
order of ε as both An and σ2

en−1,k
are independent of ε. The

result means that we do not need to redesign the bit load-
ing codebook as ε varies. We can design the codebook for
a particular ε. When ε changes to a different value, known
to both the transmitter and receiver, we only need to scale
the codewords in the codebook accordingly. Therefore, the
codebook can be easily adapted as ε changes.

On the other hand, the prediction error variance, if known
to the transmitter, is a useful reference for designing the
quantizer so that a smaller quantization error can be achieved
[11]. In particular the optimal reconstruction points for quan-
tizing a Gaussian random variable can be explicitly expressed
in terms of its variance [11]. Based on (6), it can be shown
that the variance of δn,k, denoted as En,k, has the second-
order approximation

En,k ≈ 2ε2

(ln 2)2N0
σ−2
en−1,k

[R2
n−1]kk. (7)

It contains the term [R2
n−1]kk that is not available to the

transmitter as only bit loading is fed back. Note that [R2
n−1]kk

can be bounded as

σ4
en−1,k

≤ [R2
n−1]kk ≤ σ2

en−1,k

M−1∑

"=0

σ2
en−1,!

. (8)

The upper bound is obtained by using |E[en−1,ke∗n−1,"]| ≤
σen−1,kσen−1,! . The variance σ2

en−1,!
can be obtained from

the bit loading using (2), i.e., σ2
en−1,!

= Pt/(MtΓ(2bn−1,! −
1)). Using the bounds in (8), we have

2ε2

(ln 2)2
Pt/(MtΓN0)

2bn−1,k − 1
! En,k ! 2ε2

(ln 2)2

Mt−1∑

!=0

Pt/(MtΓN0)

2bn−1,! − 1
.

(9)
With the above bounds, the transmitter can approximate En,k.
The approximation can then be used to design the recon-
struction points of the quantizers. For example, when we
use one bit to quantize, the optimal reproduction points are
±
√

2En,k/π [11].
In practical predictive quantization, only the past quan-

tized bit loading is available to the transmitter. Replac-
ing bn−1,k by the quantized version b̂n−1,k in (5), we have
b̃n,k = b̂n−1,k. The receiver applies quantization on the pre-
diction error δn,k = bn,k− b̂n−1,k and sends back the quan-
tized prediction error δ̂n,k to the transmitter. The transmitter
reconstructs the quantized bit loading by b̂n,k = b̂n−1,k +

δ̂n,k. The kth subchannel at time n is loaded with 'b̂n,k(
bits, where 'x( denotes the largest integer smaller or equal
to x.

4. SIMULATION EXAMPLES

In the following examples, the channel Hn is generated us-
ing the Gauss-Markov model in (1) for Mr = 6, Mt = 4
and M = 4. We have used fc = 2.5 ∗ 109 Hz, and T = 2
ms as suggested in [13]. In an indoor or microcellular trans-
mission scenario, the terminal speed of interest is 3 km/hr
[13], which corresponds to ε = 0.06. In the simulations,
Pt/N0 = 15 dB and the target BER is 10−4.

Example 1. In this example we demonstrate that the
prediction error δn,k is approximately Gaussian, given the
previous channel Hn−1. Fig. 2 shows the histogram of δn,0
for a randomly chosen Hn−1 using 105 realizations of Wn.
The histogram is plotted for ε = 0.06 and 0.1. The dash and
solid lines correspond to the pdf (probability density func-
tion) of zero-mean Gaussian random variables with variance
computed using (7). For ε = 0.06, the histogram is very
close to the Gaussian pdf. We see that the prediction er-
rors are well approximated by Gaussian random variables,
especially for a small ε.

Example 2. Quantized transmission rate. Fig. 3 shows
the unquantized and quantized transmission rates for ε =
0.06 and feedback rate B = 1. The prediction error δn,k
is quantized using a one-bit codebook for Gaussian random
variables and the prediction errors are interleaved for feed-
back. The unquantized rate is the sum of unquantized bit
assignments Rn =

∑M−1
k=0 bn,k, where bn,k is computed

according to (2). For the quantized rate R̂n =
∑M−1

k=0 b̂n,k,
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Figure 2: The histograms of δn,0 and pdf of zero-mean
Gaussian random variables with the same variances for
ε = 0.06 and 0.1.
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Figure 3: The unquantized and quantized transmission
rates.

we have designed the quantizers using the lower and up-
per bounds in (9). The mean squared quantization error
E[(Rn− R̂n)2] obtained by averaging over 105 channel re-
alization is 0.1582 when the upper bound is used and 0.0571
when the lower bound is used; the lower bound is a better
approximation of the prediction error variance and a smaller
quantization error can be achieved. In this case the quan-
tized rate is a good approximation of Rn even for B = 1.

5. CONCLUSION

In this paper, we considered variable-rate transmission for
time-correlated MIMO channels with limited feedback. The
transmission rate is adapted through dynamic bit assign-
ment according to the current channel. We proposed the use

of predictive quantization for the quantization of bit load-
ing. Given the previous channel, the optimal predictor turns
out to depend only on the previous bit loading. We show
through simulations that a very small quantization error can
be achieved with a small feedback rate.
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