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ABSTRACT

Max-min-fairness (MMF), which concerns optimizing the worst
signal-to-interference-plus-noise ratio (SINR) performance of re-
ceivers, is a popular transmitter design criterion in multiuser commu-
nications. In the single-input single-output (SISO), multiple-input
single-output (MISO), and single-input multiple-output (SIMO) in-
terference channels with perfect channel state information at the
transmitters, it has been shown that the MMF power allocation and
beamforming design problems are polynomial-time solvable, and
efficient optimization algorithms exist. In this paper, we assume
that the transmitters have channel distribution information only, and
study the MMF coordinated beamforming design problem under
probabilistic SINR outage constraints. While such a problem is non-
convex, it was not clear if it is polynomial-time solvable. We propose
a complexity analysis, showing that the SINR outage constrained
MMF problem is polynomial-time solvable in the SISO scenario
whereas it is NP-hard in the MISO scenario. The NP-hardness is
established by showing that the MISO MMF problem is at least as
difficult as the 3-satisfiability problem which is NP-complete.

Index Terms— Interference channel, max-min fairness, outage
probability constraint, transmit beamforming, complexity analysis

1. INTRODUCTION

Inter-cell interference is one of the main bottlenecks in wireless
cellular networks, and various interference management techniques
have been proposed to enhance the system performance [1]. In
this paper, we consider the coordinated beamforming (CoBF) de-
sign problem in a multiple-input single-output (MISO) interference
channel (IFC) where K pairs of transmitters and receivers commu-
nicate simultaneously over a common spectrum [2]. Our interest
lies in the max-min-fairness (MMF) CoBF design, which aims to
optimize the worst signal-to-interference-plus-noise ratio (SINR)
performance of the K receivers. The MMF CoBF design problem
has been extensively studied, under the assumption that the transmit-
ters have perfect knowledge of the channel state information (CSI).
In particular, it has been shown in [3, 4] that the MMF CoBF design
problem is polynomial-time solvable, in both MISO and single-
input multiple-output (SIMO) scenarios, and efficient algorithms
were proposed. However, for the multiple-input multiple-output
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(MIMO) IFC, the MMF joint transmit and receive beamforming
design problem is NP-hard, as shown in [5].

In view of that obtaining instantaneous CSI is not always feasi-
ble, especially in fast fading scenarios, we assume that the transmit-
ters have only channel distribution information (CDI). Under such
circumstances, SINR outage probability has been often used as a
measure of receiver performance. In [6], considering the single-
input single-output (SISO) IFC, the power control problem for mini-
mizing the worst SINR outage probability was studied. Specifically,
by the concave Perron-Frobenius theory [7], it was shown that the
problem can be globally solved efficiently by the algorithms devel-
oped in [6, 8]. The same design criterion was further studied in [9]
and [10] for the MISO and MIMO scenarios, respectively. However,
the associated design problems are not convex and it was not clear if
the problems can be solved in polynomial-time or not.

In this paper, we consider the SINR outage constrained MMF
CoBF design problem, which maximizes the worst SINR perfor-
mance of the receivers under probabilistic SINR outage constraints.
We are interested in the complexity analysis. Specifically, we show
that, in the SISO scenario, the outage constrained MMF problem is
polynomial-time solvable whereas it is NP-hard in the MISO sce-
nario. The former is obtained by the close relation between the
considered MMF problem and the outage probability minimization
problem studied in [6] which is polynomial-time solvable. The lat-
ter is obtained by showing that, in the MISO scenario, solving the
outage constrained MMF problem is at least as difficult as solving
a 3-satisfiability (SAT) problem which is known NP-complete [11].
Since the MMF CoBF problem is polynomial-time solvable in the
perfect CSI case [3, 4], the presented analysis result indicates that the
outage constrained MMF CoBF problem is indeed more challenging,
and is in fact computationally intractable. Besides, our analysis can
also be used to show that the MISO and MIMO outage probability
minimization problems studied in [9, 10] are NP-hard.

2. SIGNALMODEL AND PROBLEM STATEMENT

The MISO IFC where K pairs of multiple-antenna transmitters and
single-antenna receivers share a common spectrum is considered.
Each transmitter is equipped with Nt antennae, and communicates
with its intended receiver by transmit beamforming. Let hki de-
note the Rayleigh faded channel vector between transmitter k and
receiver i, i.e., hki ∼ CN (0,Qki) where Qki � 0 is the channel
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covariance matrix. The received signal at receiver i is given by

xi = h
H
iiwisi +

∑
k �=i

h
H
kiwksk + ni,

where sk ∼ CN (0, 1) is the Gaussian-encoded information signal
transmitted from the kth transmitter, wk ∈ C

Nt is the associated
beamforming vector for k = 1, . . . ,K, and ni ∼ CN (0, σ2

i ) is the
additive noise at receiver i with variance σ2

i > 0. Assuming single
user detection at receivers, the performance of each receiver depends
on the SINR of the received signal, which is given by

SINRi =
|hH

iiwi|
2∑

k �=i |h
H
kiwk|2 + σ2

i

, i = 1, . . . ,K.

In this paper, we investigate the MMF CoBF design problem for
maximizing the worst SINR performance of the receivers. Mathe-
matically, the problem can be formulated as:

max
wi∈C

Nt ,
i=1,...,K

min
i∈{1,...,K}

SINRi (1a)

s.t. ‖wi‖
2
2≤Pi, i = 1, . . . ,K, (1b)

where Pi is the power budget of transmitter i. It has been shown that
problem (1) can be optimally solved in polynomial time via solving
a finite number of second-order cone programs (SOCPs) [3].

The design formulation in (1) assumes that the transmitters have
perfect knowledge of the instantaneous CSI. However, this may not
be a feasible assumption for practical wireless systems, especially
when the channels are fast faded. In view of this, we assume that
the transmitters only know the CDI, i.e., Qki, i, k = 1, . . . ,K.
In this scenario, given any SINR requirement γi > 0, there is a
non-zero probability of SINR outage, i.e., Pr{SINRi < γi} > 0
for i = 1, . . . ,K. As a result, we consider the outage-constrained
MMF CoBF problem, where the beamformers are designed to max-
imize the minimal SINR under a tolerable probability of outage.
Mathematically, this outage-constrained MMF CoBF problem can
be formulated as:

max
wi∈C

Nt ,γi≥0,
i=1,...,K

min
i∈{1,...,K}

γi (2a)

s.t. Prob {SINRi < γi} ≤ εi, (2b)

‖wi‖
2
2 ≤ Pi, i = 1, . . . ,K, (2c)

where εi ∈ (0, 1) is the tolerable outage probability for receiver i.
According to [12], the SINR outage constraints (2b) can be ex-

plicitly expressed as:

ρie

γiσ
2
i

w
H
i

Qiiwi

∏
k �=i

(
1 +

γiw
H
k Qkiwk

wH
i Qiiwi

)
≤ 1, (3)

where ρi � 1−εi, for i = 1, . . . ,K. Due to themin function in (2a)
and the fact that the left-hand side of (3) is strictly increasing with
γi, we can impose γ1 = · · · = γK = γ without loss of optimality,
and write problem (2) as

max
wi∈C

Nt ,γ≥0,
i=1,...,K

γ (4a)

s.t. ρie
γσ2

i

w
H
i

Qiiwi

∏
k �=i

(
1+

γwH
k Qkiwk

wH
i Qiiwi

)
≤1, (4b)

‖wi‖
2
2 ≤ Pi, i = 1, . . . , K. (4c)

3. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we investigate the computational complexity of prob-
lem (4). To this end, let us consider the following feasibility prob-
lem: Given a target SINR γ̄ ≥ 0,

find w1, . . . ,wK (5a)

s.t. ρie
γ̄σ2

i

w
H
i

Qiiwi

∏
k �=i

(
1+

γ̄wH
k Qkiwk

wH
i Qiiwi

)
≤1, (5b)

‖wi‖
2
2≤Pi, i = 1, . . . ,K. (5c)

The feasibility problem (5) is the core problem for handling problem
(4). Their relation is stated in the following lemma.

Lemma 1 Let γ� denote the optimal value of problem (4). It holds
true that, for any γ̄ ≥ 0, γ� ≥ γ̄ if and only if problem (5) is feasible.
Moreover, the set of optimal beamformers to problem (4) is a subset
of the feasible set of problem (5) when γ� > γ̄, and these two sets
coincide when γ� = γ̄.

Lemma 1 can be easily proved by the monotonicity of the out-
age constraint function in (5b), and the details of the proof is omitted
here. Lemma 1 infers that problem (4) is polynomial-time solvable
if and only if problem (5) is polynomial-time solvable. In particular,
if problem (5) can be efficiently solved, then problem (4) can be ef-
ficiently solved by a bisection methodology which involves solving
a series of problem (5) [13, §4.2.5]. On the other hand, if one can
solve problem (4), then one can correctly determine whether prob-
lem (5) is feasible, and, if yes, obtain a set of feasible beamformers.
Therefore, these two problems belong to the same complexity class.
In the next two subsections, we respectively show that problem (5)
can be solved in polynomial time when Nt = 1 (the SISO scenario)
and is NP-hard whenNt > 1 (the MISO scenario).

3.1. Single Transmit Antenna Case

We assume that each of the transmitters is equipped with a single
antenna. In that case, the channel covariance matrices Qki � 0,
i, k = 1, . . . ,K, degenerate to the channel variances Qki ≥ 0,
∀i, k. Moreover, by (4b) and (4c), the effective optimization vari-
ables are the transmit powers, i.e., pi � ‖wi‖

2
2, i = 1, . . . ,K. In

this case, problem (4) degenerates to the following power control
problem.

max
pi≥0,γ≥0,
i=1,...,K

γ (6a)

s.t. ρie
γσ2

i
piQii

∏
k �=i

(
1 +

γpkQki

piQii

)
≤ 1, (6b)

pi≤Pi, i = 1, . . . ,K. (6c)

Accordingly, problem (5) reduces to

find p1, . . . , pK (7a)

s.t. ρie
γ̄σ2

i
piQii

∏
k �=i

(
1 +

γ̄pkQki

piQii

)
≤ 1, (7b)

0≤pi≤Pi, i = 1, . . . ,K. (7c)

By considering the logarithmic change of variables p̃i = ln pi for
i = 1, . . . ,K, one can further write (7) as
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min
p̃i,α̃,i=1,...,K

α̃ (8a)

s.t. ln ρi+
γ̄

Qii
e−p̃i+

∑
k �=i

ln

(
1+

γ̄Qki

Qii
ep̃k−p̃i

)
≤ α̃, (8b)

p̃i ≤ lnPi, i = 1, . . . ,K. (8c)

Specifically, one can see that problem (7) is feasible if and only if
the optimal α̃ of problem (8) is less than or equal to zero. Prob-
lem (8) is in fact equivalent to the outage probability minimization
problem studied in [6] which can be efficiently solved by a non-
linear Perron-Frobenius theory-based algorithm with overall com-
plexity O(K ln(K/ε)) (see [6, Algorithm 1]), where ε specifies the
solution accuracy. Thus, problem (6) can be solved by bisection as
described in Algorithm 1. The overall complexity of Algorithm 1 is
κ · O(K ln(K/ε)), where

κ �

⌈
log2

(
δ−1 ·min

i

(
PiQii ln(1/ρi)

σ2
i

))⌉
(9)

is the number of bisection iterations required for the convergence of
Algorithm 1.1

Algorithm 1 Bisection method for solving problem (6)

1: Set γ� := 0, γu := mini
PiQii ln(1/ρi)

σ2

i

, and set the solution
accuracy to δ > 0;

2: repeat
3: Set γ̄ := (γ� + γu)/2;
4: Solve problem (8), and denote the solution as ({p̃�i }Ki=1, α̃

�);
5: Set γ� := γ̄ if α̃� ≤ 0; otherwise, set γu := γ̄;
6: until γu − γ� < δ;
7: Output p�i = ep̃

�
i , γ� = γ̄, i = 1, . . . , K, as a solution to

problem (6).

As a result, Algorithm 1 has a polynomial-time complexity un-
der the mild assumption that κ is finite, which is always the case
in practical situations. We thus conclude this subsection with the
following theorem.
Theorem 1 When Nt = 1, the outage constrained MMF CoBF
problem (4) (i.e., problem (6)) is polynomial-time solvable.

3.2. Multiple Transmit Antenna Case

In this subsection, we show that problem (4), in contrast to the SISO
case, is NP-hard when each of the transmitters is equipped with mul-
tiple antennas. The complexity analysis result is described in the
following theorem.
Theorem 2 When Nt ≥ 2, the outage-constrained MMF CoBF
problem (4) is NP-hard in the number of users K.

Proof: As inferred from Lemma 1, it suffices to show that solving
the feasibility problem (5) is NP-hard when Nt ≥ 2. Our idea is
to show that the 3-satisfiability (3-SAT) problem, which is known to
be NP-complete [11], is reducible to problem (5), i.e., solving the
3-SAT problems cannot be harder than solving problem (5). The
3-SAT problem is defined below.

1From constraints (6b), it is observed that the maximal SINR of the
ith transmitter-receiver pair is attained when pi = Pi and pk = 0
∀k �=i. Thus, we have γ ≤ PiQii ln(1/ρi)/σ2

i for all i. Consequently,
mini PiQii ln(1/ρi)/σ

2
i is an upper bound to the optimal value of prob-

lem (6). On the other hand, γ = 0 is obviously a lower bound to the optimal
value of (6). Therefore, the number of bisection iterations for achieving the
solution accuracy δ > 0 is given by (9).

d1=x1∨x2∨x3 d2=x2∨¬x3∨¬x4

x1 x2 x3 x4

c1 c2

v10
v11

v12
v13

v14 v20
v21

v22
v23

v24 v30
v31

v32
v33

v34 v40
v41
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Transmitters

Receivers

Direct Links

Cross Links

Fig. 1. Illustration of the correspondence between a 3-SAT problem
instance (x1∨x2∨x3) ∧ (x2∨¬x3∨¬x4), which consists of N = 4
Boolean variables andM = 2 clauses, and a MISO IFC with K =
5× 4 + 2 pairs of transmitters and receivers.

Definition 1 Given N Boolean variables andM clauses each con-
taining exactly three literals of different Boolean variables, the 3-
SAT problem is to determine whether there exists a truth assignment
of the Boolean variables such that the conjunction of theM clauses
is true.

For ease of exposition, we use “∧”, “∨”, and “¬” to denote
the logical conjunction (AND), disjunction (OR), and negation af-
terwards. Given a problem instance of 3-SAT, i.e., given N Boolean
variables x1, . . . , xN and M clauses dm = yim∨yjm∨ykm , m =
1, . . . ,M , where yim is either xim or its negation ¬xim and so are
yjm , ykm , we construct the following problem instance of (5). Let
K = 5N +M and denote the set of transmitter-receiver pairs as

U = V0 ∪ V1 ∪ V2 ∪ V3 ∪ V4 ∪ C,

where V� � {v1�, v2�, . . . , vN�} denotes the 	th user set associated
with x1, . . . , xN , for 	 = 0, . . . , 4, and C � {c1, . . . , cM} denotes
the users associated with d1, . . . , dM . The other parameters for this
problem instance of (5) are chosen as:

Nt = 2, γ̄ = 1, Pu = 1, ρu = ρ = 0.9, ∀u ∈ U , (10a)

σ2
vn0

=ln
(1
ρ

)
, σ2

vn�
=ln

( 10

11ρ

)
, σ2

cm=0.01, ∀n,m,∀	 �= 0,

(10b)

Quu =

[
1 0
0 1

]
, ∀u ∈ U , Qvn0,vn�

=
A�

10
, ∀n,∀	 �= 0 (10c)

Qvn0,cm =

⎧⎪⎪⎨
⎪⎪⎩

1
25

[
0 0
0 1

]
, if xn∈{yim , yjm , ykm},

1
25

[
1 0
0 0

]
, if ¬xn∈{yim , yjm , ykm},

∀n,

(10d)
Qu1,u2

= 0, for all u1, u2 not specified above, (10e)

where

A1=

[
1 1
1 1

]
, A2=

[
1 −1
−1 1

]
, A3=

[
1 ι
−ι 1

]
, A4=

[
1 −ι
ι 1

]
,

and ι2 = −1. An illustrative example for the correspondence be-
tween a 3-SAT problem and a problem instance of (5) is provided
in Fig. 1. In this example, a problem instance of 3-SAT consisting
of four Boolean variables, x1, x2, x3, x4, and two clauses, d1 =
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(x1∨x2∨x3), d2 = (x2 ∨¬x3 ∨¬x4) is considered. Each Boolean
variable xn corresponds to five pairs of transmitter and receivers, i.e.,
vn0, vn1, . . . , vn4, for n = 1, . . . , 4. For these transmitter-receiver
pairs, only the transmitter of vn0 interferes with the receivers of
vn1, . . . , vn4 for n = 1, . . . , 4, and the channel covariance matrices
are given in (10c). On the other hand, each clause dm corresponds
to one transmitter-receiver pair cm form = 1, 2, and the receiver of
cm is interfered by the transmitter of vn0 if the Boolean variable xn

or its negation ¬xn exists in clause dm. Moreover, the covariance
matrix of the channel between the receiver of cm and the transmitter
of vn0 depends on whether xn or the negation ¬xn appears in dm,
as indicated in (10d). In Fig. 1, the transmitters and receivers are not
connected if the associated cross-link channel covariance matrix is
zero as indicated in (10e).

According to the construction specified in (10), the correspond-
ing problem instance of (5) can be expressed as

find {wv
n0}

N
n=1, {w

v
n1}

N
n=1, . . . , {w

v
n4}

N
n=1, {w

c
m}Mm=1 (11a)

s.t. ρe
σ2
vn0

‖wv
n0

‖2
2 ≤ 1, ∀n, (11b)

ρe

σ2
vn�

‖wv
n�

‖2
2

(
1+

(wv
n0)

HA�w
v
n0

10‖wv
n�‖

2
2

)
≤1,∀n, ∀	 �= 0, (11c)

ρe

σ2
cm

‖wc
m‖2

2

∏
τ=im,jm,km

(
1+

(wv
τ0)

HQvτ0,cmw
v
τ0

‖wc
m‖22

)
≤1, ∀m,

(11d)

‖wv
n�‖

2
2 ≤ 1, ‖wc

m‖22 ≤ 1, ∀n, ∀m, ∀	, (11e)

where wv
n� and wc

m denote the beamformers of transmitter vn� and
cm, respectively. Next, we will show that the given 3-SAT problem
instance is satisfiable if and only if (11) is feasible.

We first show that any feasible point of problem (11) corre-
sponds to a truth assignment satisfying the given instance of 3-SAT.
Note that we can rewrite constraint (11b) as

‖wv
n0‖

2
2 ≥ σ2

vn0
(ln ρ−1)−1 = 1, n = 1, . . . , N, (12)

where the equality comes from (10b). Hence, constraints (11b) and
(11e) imply ‖wv

n0‖
2
2 = 1 for n = 1, . . . , N . Similarly, we can

rewrite (11c) as

(wv
n0)

H
A�w

v
n0 ≤ 10‖wv

n�‖
2
2

(
ρ−1 exp

(
−σ2

vn�

‖wv
n�‖

2
2

)
−1

)

(∗)

≤ max
‖wv

n�
‖2
2
≤1

10‖wv
n�‖

2
2

(
ρ−1 exp

(
−σ2

vn�

‖wv
n�‖

2
2

)
−1

)
(∗∗)
= 1, (13)

for n = 1, . . . , N , 	 = 1, 2, 3, 4, where (∗) holds with equality if
and only if ‖wv

n�‖
2
2 = 1, and (∗∗) comes from (10b). Furthermore,

(wv
n0)

H
A�w

v
n0 + (wv

n0)
H
A�+1w

v
n0 = 2‖wv

n0‖
2
2 = 2, 	 = 1, 3,

(14)
for all n = 1, . . . , N . Combining (13) and (14) yields

(wv
n0)

H
A�w

v
n0 = 1, and ‖wv

n�‖
2
2 = 1, (15)

for all n = 1, . . . , N and 	 = 1, 2, 3, 4. Then, we have

(wv
n0)

H(A1−A2)w
v
n0 = 4Re{([wv

n0]2)
H [wv

n0]1} = 0, (16a)

(wv
n0)

H(A3−A4)w
v
n0 = 4Im{([wv

n0]2)
H [wv

n0]1} = 0, (16b)

for all n = 1, . . . , N , where [wv
n0]1 and [wv

n0]2 denote the first and
second elements ofwv

n0, respectively. Thus, the feasiblewv
n0’s must

satisfy either [wv
n0]1 = 0 or [wv

n0]2 = 0. Besides, by observing
constraints (11d) and (11e), one can let ‖wc

m‖22 = 1 for all m =
1, . . . ,M without loss of generality. By (15), (16), and ‖wc

m‖22 = 1
for all m = 1, . . . ,M , we can equivalently reformulate problem
(11) as

find {wv
n0}

N
n=1, {w

v
n1}

N
n=1, . . . , {w

v
n4}

N
n=1, {w

c
m}Mm=1 (17a)

s.t. wv
n0 ∈

{
∪

θ∈[0,2π]
[ejθ 0]T

}
∪
{

∪
θ∈[0,2π]

[0 ejθ]T
}
, ∀n, (17b)

ρeσ
2

cm

∏
τ=im,jm,km

(
1+(wv

τ0)
H
Qvτ0,cmw

v
τ0

)
≤1, ∀m, (17c)

‖wv
n�‖

2
2 = 1, ‖wc

m‖22 = 1, ∀n, ∀m, ∀	. (17d)

By (10d) and constraint (17b), one can see that

(wv
τm0)

H
Qvτm0,cmw

v
τm0

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if yτm = xτm , wv
τm0 ∈

{
∪

θ∈[0,2π]
[ejθ 0]T

}
,

0, if yτm = ¬xτm , wv
τm0 ∈

{
∪

θ∈[0,2π]
[0 ejθ]T

}
,

1/25, if yτm = xτm , wv
τm0 ∈

{
∪

θ∈[0,2π]
[0 ejθ]T

}
,

1/25, if yτm = ¬xτm , wv
τm0 ∈

{
∪

θ∈[0,2π]
[ejθ 0]T

}
.

(18)

Furthermore, constraint (17c) is violated if and only if

(wv
τ0)

H
Qvτ0,cmw

v
τ0 = 1/25, ∀τ ∈ {im, jm, km}.

Therefore, supposing that ŵv
n�, ŵc

m, n = 1, . . . , N ,m = 1, . . . ,M ,
	 = 0, . . . , 4, are feasible to (17), it must be true that

(ŵv
τ0)

H
Qvτ0,cmŵ

v
τ0=0, for some τ ∈ {im, jm, km}, ∀m. (19)

According to (18) and (19), the conjunction of theM clauses is sat-
isfied (i.e., is true) by the following truth assignment:

xn =

⎧⎨
⎩
1, if ŵv

n0 ∈
{

∪
θ∈[0,2π]

[ejθ 0]T
}
,

0, if ŵv
n0 ∈

{
∪

θ∈[0,2π]
[0 ejθ ]T

}
.

On the other hand, suppose that the 3-SAT problem instance is
satisfiable and x̂n ∈ {0, 1}, n = 1, . . . , N , is a truth assignment
such that the conjunction of d1, . . . , dM is true. Then, it is straight-
forward to verify that

w
v
n0 =

{
[1 0]T , x̂n = 1,

[0 1]T , x̂n = 0,
∀n,

‖wv
n�‖

2
2 = ‖wc

m‖22 = 1, ∀n, ∀m, ∀	 �= 0,

is feasible to problem (11). Thus, we have proved the equivalence
between the 3-SAT problem instance and problem (11), implying
that the 3-SAT problem is reducible to problem (5). As a result,
determining the feasibility of problem (5) is NP-hard when Nt ≥ 2,
and hence problem (4) is also NP-hard according to Lemma 1. �

In conclusion, we have proved that the SINR outage constrained
MMF CoBF problem (4) is NP-hard in general, and have identified
a subclass, i.e., single transmit antenna case, of this problem that
is polynomial-time solvable. Finally, we make a remark that, our
analysis can also be used to show that the outage probability mini-
mization problem studied in [6, 9, 10] is also NP-hard for the MISO
and MIMO IFCs.
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