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ABSTRACT

In this work, we examine a computationally efficient block-

updating scheme for estimating the spectral content of sig-

nals with missing samples. The work is an extension of our

recent single-sample data interpolation updating of the Itera-

tive Adaptive Approach (IAA), being reformulated to incor-

porate blocks of samples. The proposed implementation of-

fers a substantial complexity reduction as compared to earlier

presented updating schemes, without sacrificing the quality

of the resulting spectral estimates more than marginally (if at

all).

Index Terms— Spectrum estimation theory and methods,

Iterative Adaptive Approach (IAA), fast algorithms

1. INTRODUCTION

Missing samples occur for a variety of reasons, for instance

due to samples being lost or unmeasurable, sensor failure,

or various forms of disturbances, and will, if not treated

properly, corrupt the identification or estimation procedure

for such data sequences (see, e.g. [1–3], and the references

therein). In this work, we examine high-resolution spec-

tral estimation of data sets containing missing samples, a

problem that has attracted notable attention in the recent

literature, with solutions ranging from classical estimation

methods such as the Lomb-Scargle periodogram [4, 5], to

data-adaptive algorithms such as MAPES [2] and MIAA [3],

where both the latter are formed under the assumption that

the missing samples share the same spectral content as the

given samples. Of the latter, the MIAA algorithm, which is

based on the iterative adaptive approach (IAA) [6], has been

shown to yield preferable performance as compared to other

conventional data-adaptive methods (see also [7] and the ref-

erences therein). We have in earlier work examined how to

form computationally efficient time-recursive (TR) formu-

lations of IAA-based spectral estimators [8–10], exploiting
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the inherently low displacement rank of the updating, to-

gether with the development of suitable Gohberg-Semencul

(GS) representations. Most recently, in [10], we examined

the possibility to form an approximative data interpolation

updating, such that the TR-MIAA was updated using the

TR-IAA updating presented in [8] if the updating sample

was available, and using a data interpolation scheme, recon-

structing the sample, if missing. The resulting interpolated

TR-MIAA algorithm, termed TRI-MIAA, was found to be

dramatically cheaper computationally as compared to the

TR-MIAA updating. In this work, we generalize the fast

TRI-MIAA (FTRI-MIAA) implementation presented in [10]

to allow also for block-recursive updating, such that blocks

of data, possibly containing missing samples, are processed

at each updating step.

2. TIME-VARYING SPECTRAL ESTIMATION
USING THE MIAA APPROACH

Let

yN (n) =
[
y(n−N + 1) . . . y(n)

]T
(1)

denote a snapshot of the discrete time signal y(n) within a

sliding window of size N , with (·)T denoting the transpose.

When all samples are available, the corresponding spectrum

at time instant n can be computed in various ways [11], and

a range of computationally affordable time-updating schemes

are also available that allows for a sliding window update as

an additional sample becomes available [8,12–15]. However,

when the data set may also contain missing samples located

at random, but known positions, the derivation of computa-

tionally efficient spectral estimation methods becomes a more

challenging task [1, 10]. Suppose that at time instant n, Gn

samples among those in (1) are available, whereas the remain-

ing Mn = N − Gn data are missing. The so-called MIAA

algorithm presented in [3] is then formed by iterating (2)-(4),

until practical convergence,

αn(ωk) =
fHGn

(ωk)R
−1
Gn

(n)yGn(n)

fHGn
(ωk)R

−1
Gn

(n)fGn
(ωk)

(2)

Φn(ωk) = |αn(ωk)|2 (3)
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RGn
(n) =

K−1∑
k=0

Φn(ωk)fGn
(ωk)f

H
Gn

(ωk) (4)

with (·)H denoting the conjugate transpose, and

yGn(n) = SGnyN (n) (5)

fGn(ωk) = SGnfN (ωk) (6)

denoting the vector of the given data and the corresponding

frequency vector respectively, where

fN (ωk) �
[
1 ejωk . . . ejωk(N−1)

]T
The matrix SGn

is a Gn × N time-varying selection matrix,

with zeros and ones indicating the presence of a sample in

(1). As it was shown in [7, 16], the MIAA algorithm allows

for a fast implementation, requiring approximately m[G3
n +

1.5K log2(K)] operations, where m denotes the number of

iterations applied in (2)-(4), with usually 10 -15 iterations be-

ing adequate for practical convergence. When Mn < Gn, an

even faster implementation is also available [17]. When block

processing is considered, the MIAA may be applied directly

on each block of data in (1), providing a new spectral esti-

mate after each L time instances, where L < N is the size of

the block step. The resulting scheme, here termed the block

MIAA (B-MIAA) will thus produce spectral estimates every

L time instances, processing consecutive and overlapped data

blocks one at a time, as being in batch mode. However, this

form of updating will result in an unnecessarily heavy work

load, equal to that required when each individual data set is

processed in batch mode. Fortunately, a TR block-updating is

feasible. The consecutive data sets yGn−L
(n−L) and yGn

(n)
share Ḡ − L common elements, where Ḡ denotes the mean

number of missing samples within (1). Thus, it is reason-

able to use the previously estimated spectrum Φn−L(ωk) for

the computation of RGn
(n) in (2). The spectral estimate at

time instant n is subsequently computed using (2) and (3), re-

sulting in this way in a considerable savings in the required

computation, without sacrificing much (if any) of the quality

in the estimated spectra, yielding the updating

RGn
(n) =

K−1∑
k=0

Φn−L(ωk)fGn
(ωk)f

H
Gn

(ωk) (7)

αn(ωk) =
fHGn

(ωk)R
−1
Gn

(n)yGn(n)

fHGn
(ωk)R

−1
Gn

(n)fGn
(ωk)

(8)

Φn(ωk) = |αn(ωk)|2 (9)

We here term this form of TR block-updating the block

TR-MIAA (BTR-MIAA). The computational complexity of

the BTR-MIAA is about [G3
n + 1.5K log2(K)] operations

per processed block, although, as noted, when L = 1, corre-

sponding to single sample updates, efficient implementations

are already available [9, 10]. Building upon and extending

these works, we here focus on the more general case when

1 ≤ L < N .

3. DATA INTERPOLATION BTR-MIAA

By supposing that all but the most L < N recent samples

yL(n) =
[
y(n− L+ 1) . . . y(n)

]T
(10)

are either given or have been replaced by some form of re-

construction estimates, the thus reconstructed data vector,

ŷĜn
(n), may be expressed as

ŷĜn
(n) =

[
ŷT
N−L(n− L) yT

gn(n)
]T

(11)

where ygn(n) denotes the most recent given samples, being

related to (10) by

ygn(n) = SgnyL(n) (12)

whereas Sgn is a gn × L selection matrix, with zeros and

ones indicating the presence of a sample, with gn denoting

the number of available samples in yL(n). Clearly,

SĜn
=

[
IÑ 0Ñ,L

0T
Ñ,gn

Sgn

]
(13)

where Ñ = N −L and Ĝn = N −L+ gn. The BTR-MIAA

is then formed as

RĜn
(n) =

K−1∑
k=0

Φn−L(ωk)fĜn
(ωk)f

H
Ĝn

(ωk) (14)

αn(ωk) =
fH
Ĝn

(ωk)R
−1

Ĝn
(n)ŷĜn

(n)

fH
Ĝn

(ωk)R
−1

Ĝn
(n)fĜn

(ωk)
(15)

Φn(ωk) = |αn(ωk)|2 (16)

It remains to show how the mn � L − gn missing data

ŷmn
(n) within the most recent data block yL(n) are recon-

structed using the previous estimates. This task is performed

using the time-domain MIAA-t missing data interpolation

method proposed in [3], such that

ŷmn
(n) =

K−1∑
k=0

Φn(ωk)f
H
Ĝn

(ωk)R̃
−1

Ĝn
(n)ŷĜn

(n)fmn
(ωk)

(17)

where

fmn
(ωk) � Smn

[
ejωk(Ñ−1) . . . ejωk(N−1)

]T
(18)

R̃Ĝn
(n) =

K−1∑
k=0

Φn(ωk)fĜn
(ωk)f

H
Ĝn

(ωk) (19)

The resulting combined algorithm, here termed the block

TR interpolation MIAA (BTRI-MIAA) is constructed by the

updating of (14)-(15), noting that the initialization should

be performed by a complete MIAA-t step being applied for
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spectral estimation and missing data interpolation. Unfortu-

nately, neither RĜn
(n) or R̃Ĝn

(n), given by (14) and (15),

are structured matrices, and thus the efficient implementation

schemes developed in the past [7, 8, 18] cannot be applied di-

rectly. However, due to the special form of (13), RĜn
(n) and

R̃Ĝn
(n) may be partitioned in such a way that their upper left

part is Toeplitz. Thus, the derivation of fast implementation

schemes is still feasible, although at some extra effort. With

this observation, we proceed to detail the resulting efficient

implementation.

4. EFFICIENT IMPLEMENTATION OF BTRI-MIAA

As noted, the elements of RĜn
(n) may be extracted from a

circulant matrix of increased dimensions defined as

K−1∑
k=0

Φn−L(ωk)fK(ωk)f
H
K (ωk) (20)

where the first column may be computed efficiently using the

FFT [7, 8, 18]. Using (13), (14) is partitioned as

RĜn
(n) =

[
RÑ (n) RÑ,gn

(n)

RH
Ñ,gn

(n) Rgn,gn(n)

]
(21)

noting that the upper left part RÑ (n) is a Ñ × Ñ Toeplitz

matrix. Applying the matrix inversion lemma for partitioned

matrices yields

R−1

Ĝn
(n) =

[
R−1

Ñ
(n) 0

0T 0

]
+ Bn (22)

where Bn = BĜn,gn
(n)BH

Ĝn,gn
(n),

BĜn,gn
(n) �

[−R−1

Ñ
(n)RÑ,gn

(n)

Ign

]
A−1/2

gn,gn(n) (23)

and

Agn,gn(n) = Rgn,gn(n)−RH
Ñ,gn

(n)R−1

Ñ
(n)RÑ,gn

(n)

(24)

As RÑ (n) is a Toeplitz matrix, its inverse may be repre-

sented using the GS factorization as a sum of products of

triangular Toeplitz matrices, whose leading column may be

computed using the Levinson-Durbin algorithm [11]. Fur-

thermore, BĜn
(n) may be computed column-wise from (23),

using the GS representation of R−1

Ñ
(n) and fast Toeplitz vec-

tor multiplication via the FFT (see also [19–21]). Thus, all

parameters in (21)-(24) may be computed at a cost of about

Ñ2 + 6gnÑ log2(2Ñ) + g2nÑ + g3n operations. Further, the

sought spectral coefficients in (22) may be expressed in terms

of trigonometric polynomials, defined as

αn(ωk) =
ψn(ωk)

ϕn(ωk)
(25)

ψn(ωk) � fH
Ĝn

(ωk)dĜn
(n) (26)

ϕn(ωk) � fH
Ĝn

(ωk)R
−1

Ĝn
(n)fĜn

(ωk) (27)
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Fig. 1. Computational complexity of the B-MIAA, the BTR-

BIAA, the FTRI-MIAA, and the proposed FBTRI-MIAA

spectral estimation algorithms, versus the sliding window

data size N .

where

dĜn
(n) � R−1

Ĝn
(n)ŷĜn

(n) (28)

Using (22),

dĜn
(n) =

[
R−1

Ñ
(n)ŷÑ (n− L)

0

]
+ BnŷĜn

(n) (29)

Once again, the GS factorization of R−1

Ñ
(n) is used for the

fast computation of the inverse matrix vector product that ap-

pears in (29), at a cost of about 6Ñ log2(2Ñ) + 2gnĜn oper-

ations. Inserting (22) into (27) yields

ϕn(ωk) = φn(ω) + ξn(ωk) (30)

where

φk(ωk) = fH
Ñ
(ωk)R

−1

Ñ
(n)fÑ (ωk) (31)

ξn(ωk) �
gn∑
�=1

χ�
n(ωk)χ

� ∗
n (ωk) (32)

χ�
n(ωk) � fH

Ĝn
(ωk)b

�
Ĝn

(n) (33)

for 	 = 1, . . . , Lg(n), where b�
Ĝn

(n) denotes the 	-th column

of the matrix BĜn,gn
(n), and with (·)∗ denoting the conju-

gate. The coefficients of the trigonometric polynomial

φn(ωk) =

Ñ−1∑
�=−Ñ+1

c�ne
j�ωk (34)

are computed using the GS representation of R−1

Ñ
(n), as pro-

posed in [7, 18], without the need of forming the inverse ma-

trix explicitly, at a cost of about 3Ñ log2(2Ñ) operations.
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(a) (b) (c)

(d) (e)

Fig. 2. (a) DFT, (b) B-MIAA, (c) BTR-MIAA, (d)FTRI-MIAA and (e) the proposed FBTRI-MIAA

Furthermore, the coefficients of the trigonometric polynomial

ξn(ωk) =

N−gn−1∑
�=−N+gn+1

h�
ne

j�ωk (35)

are computed from (31) and (32) using fast polynomial multi-

plication and the FFT [22], at a cost of about gnĜn log2(2Ĝn)
operations. Finally, (26) and (30) are evaluated using the FFT,

at a cost of K log2(K) operations, where K denotes the num-

ber of frequencies equally spaced on the unit circle. We pro-

ceed to examine the data reconstruction steps in (15) and (17),

which require the computation d̂Ĝn
(n) � R̃−1

Ĝn
(n)ŷĜn

(n).

This task is similar to the one in (28); note that R̃−1

Ĝn
(n),

given by (15), allows for an left upper partition along the

lines of (21), and thus all the involved computations can be

performed using the GS representation of R̃−1

Ñ
(n). Noting

that RÑ (n) = R̃Ñ (n − L), a single GS representation is

propagated through time, avoiding in this way the applica-

tion of the Levinson-Durbin algorithm twice, i.e., once for

the computation of the GS representation RÑ (n) and once

for that of R̃Ñ (n). As a result, the computational complexity

of the resulting fast BTRI-MIAA (FBTRI-MIAA) algorithm

is approximately given by C ≈ N2 + O(gnN log2(N)) +
K log2(K) per spectral updating. The exact value of the O(·)
term depends on the implementation details of the adopted

fast Toeplitz vector multiplication method [19–21].

5. NUMERICAL EVALUATION

The computational efficiency offered by the proposed fast im-

plementation is illustrated in Fig. 1, where the computational

complexity of B-MIAA, BTR-BIAA, FTRI-MIAA, and the

proposed FBTRI-MIAA spectral estimation algorithms are

shown as a function of the sliding window data size N . Here,

the block processing step L has been set equal to L = 0.1N ,

corresponding to 10% overlapping between successive data

windows. The level of the missing data is set equal to 50%,

implying that, on average, gn = 0.5L. It should further be

noted that B-MIAA, BTR-BIAA, and FBTRI-MIAA yields

an updated spectral estimate only every L time instances,

whereas the FTRI-MIAA will produce an updated spectral

estimate at each time instant, i.e., using L = 1. The number of

B-MIAA iterations that are performed on each individual data

window was set equal to m = 10. In all cases, the number

of frequency points was set equal to K = 10N . To illustrate

the performance of the proposed algorithm, Figure 2 shows

the estimated spectral estimates of a time-varying signal con-

sisting of a mixtures of two cisoids with abruptly changing

frequencies and a complex-valued linear chirp with descend-

ing/ascending linear frequency variations, being corrupted by

an additive zero-mean complex Gaussian noise (see [8] for a

detailed description of the signal). Here, N = 120, L = 10,

and 50% of the data are missing. The DFT spectrogram is

computed from the given data every other L time instances.
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