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ABSTRACT

We consider the problem of controlling the user service de-

lays for a system that employs a scheduling scheme based on

Cumulative Density Functions (CDF) of user channels in a

correlated Rayleigh fading environment. We first formulate

and solve this control problem as a Markov Decision Process

(MDP) on the system state space formed by the user chan-

nel conditions and delay times. The MDP formulation, how-

ever, has prohibitively high complexity for systems with typi-

cal number of users. We then propose an approximation to the

MDP formulation that can achieve performance close to MDP

optimal solution but has much lower complexity for large sys-

tems.

Index Terms— CDF, MDP, scheduling, QoS, delay

1. INTRODUCTION

In a wireless system, dynamic user scheduling is one of the

most important techniques to maximize the system perfor-

mance. One fundamental function of any scheduling policy

in a multi-user system is to provide access fairness among

the users while taking maximal advantage of multiuser diver-

sity. Many scheduling schemes have been proposed over the

years with many different performance and fairness criteria

[1], [2]. In this paper, we investigate a particular schedul-

ing scheme with a very rigorous notion of fairness, the CDF-

based scheduling policy introduced in [3]. In CDF schedul-

ing, the users are served when their channels are at their own

best, independent of the discrepancies in channel probability

distributions among the users.

While CDF-scheduling can guarantee fairness among all

the users on a long-term basis when all the users have a chance

to experience all different fades of their channels, there is no

limit as to how long a particular user must wait to be served.

If a user that has a long channel coherence time happens to be

in a deep fade, the user’s service delay time can be very long,

which can be unacceptable depending on the user’s applica-

tions. Service delay time is thus a very important Quality-

of-Service (QoS) metric of any scheduling policy. In [4], the

authors address this QoS issue using the effective bandwidth
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and capacity formulations. However, they do not consider the

case where more than one users in the system have correlated

channels, which is most likely the case in any real system.

Other works in the literature that deal with service delay QoS

such as [5] [6] do not address the CDF scheduling framework

that we are interested in. In [7], the authors consider opti-

mizing user queuing delays under a finite backlog scenario

using Partially Observed MDP (POMDP). In contrast, our

work is developed under the assumption of infinite backlog

for all users, where the access fairness becomes critical. The

work closest to ours in terms of problem formulation is [8],

in which the authors also use MDP for solving optimal code

allocation in packet scheduling for HSDPA systems. While

our work starts out with the MDP framework, our MDP for-

mulation, however, has completely different state and action

spaces, and also a different optimization objective that seeks

to maximize the CDF performance while providing service

delay control. In addition, using the MDP formulation only

as a guideline, we specifically design a low-complexity algo-

rithm that works well for systems with large number of users.

2. SYSTEM MODEL

Let us consider a wireless system with K users sharing the

same wireless channel in a time division manner. Assume all

the users experience independent Rayleigh fading with differ-

ent coherence times due to differences in their mobility. Let

Xk, k = 1 . . . K, be the instantaneous SNR of user k. Let

Uk = FXk
(Xk) be the CDF-transformed random variable for

user k, where FXk
(x) is the Cumulative Distribution Func-

tion (CDF) for Xk. In CDF scheduling [3], the user is sched-

uled based on Uk according to k∗ = argmax
k

U
(1/wk)
k , where

k∗ is the index of the selected user, wk is the time allocation

fraction for user k,
∑K

k=1 wk = 1.

We now divide the range of Uk, which is interval [0, 1] on

the y-axis on Fig 1, into (M + 1) equal sized intervals with

boundary values denoted by ui, i = 0, . . . , (M + 1) (with

u0 = 0, uM+1 = 1). Let ik be the index of the quantized

CDF-mapped value of the Xk, where uik ≤ Uk < uik+1

as in Fig 1 (denoted as the CDF index henceforth). It can be

seen that the CDF index ik captures the user’s relative channel

condition via the corresponding quantized CDF value uik .
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Fig. 1. CDF Partitioning

Consider a fading scenario where the fade is constant for

a symbol duration with a CDF index ik and the CDF index

for the next symbol i′k is either ik, (ik − 1) or (ik + 1). For

Rayleigh fading channels, the transition probability from one

quantized SNR value to an adjacent one is derived in [9] as:

ti,i+1 ≈
Ni+1

R
(i)
t

and ti,i−1 ≈
Ni

R
(i)
t

, (1)

where ti,i+1 , Pr[i′k = i + 1|ik = i], ti,i−1 , Pr[i′k =
i − 1|ik = i], Ni+1 is the average rate of the instantaneous

SNR crossing the threshold Xi, Ni is the average rate of the

instantaneous SNR crossing the threshold Xi−1, R
(i)
t is the

average rate transmitted when the instantaneous SNR is in

the ith interval. Also according to [9], we have

Ni =

√

2πdi
ρ

fm exp

(

−
di
ρ

)

, R
(i)
t = Rt × pi

where ρ is the mean of the squared Rayleigh fading ampli-

tude, di is the quantization boundary in Fig. 1, fm = fcv/c is

the max Doppler shift, with v being the user velocity, fc the

carrier frequency, and c the speed of light. Rt is the symbol

rate, and pi = Pr[ik = i]. Since the quantization is uniform

in the CDF domain per our construction, we conclude that

pi = Pr[ik = i] = 1/(M+1). As all the users share the same

RF channel, the symbol rate Rt = 1/Tsym is the same for all

users, where Tsym is the symbol interval, which depends only

on the bandwidth of the channel. Thus the following result is

true for all users:

R
(i)
t = Rt × pi =

1

(M + 1)Tsym

It is obvious that the channel SNR quantized according

to the above CDF partitioning forms a discrete Markov pro-

cess. When the scheduling interval Tsched is larger than one

symbol duration, Tsched/Tsym = N > 1, let P be the 1-step

transition matrix, we have an N -step transition:

Pr[i′k = j|ik = i] = [PN ]i,j , where [P]i,j = ti,j

Since the user channel conditions and, as we will see later,

serving times as well can be modeled as discrete Markov pro-

cesses, it is natural to consider the Markov Decision Process

(MDP) for obtaining the optimal scheduling decisions.

Fig. 2. Markov Process For Serving Times

3. MDP FORMULATION

In order to formulate an MDP, we need to define a system

state vector s(n) at time n, s(n) ∈ S , an action vector a(n) ∈
A, the transition probability Pr[s(n + 1)|s(n),a(n)], and a

reward function R(s(n),a(n)). The reward function R must

be designed to reflect the objective of the scheduling policy.

The optimal policy π∗ is one that maximizes the expected

total reward V π(s) from any state s [10]:

π∗ = argmax
π

V π(s)

= argmax
π

E

[
∞∑

n=0

γnR(s(n),a(n))|s(0) = s

]

where γ < 1 is the discount factor. At time slot n, we define

the system state as follows

s(n) = [ik(n), Tk(n)], k = 1 . . . K, (2)

where ik(n) is the CDF index of the user k at time slot n,

Tk(n) = min {tk(n), Tk,th} with tk(n) being the number of

time slots since the last time user k was served, Tk,th a pre-

defined maximum threshold used to keep the state space fi-

nite, which can potentially be assigned with a larger than nor-

mal weight to discourage staying in this state. Tk(n) forms a

simple Markov process as shown in Fig 2.

The action vector a(n) is defined as one of the basis vector

ek ∈ B of the vector space RK

a(n) ∈ B = {[1, 0, . . . , 0]T , . . . , [0, 0, . . . , 1]T } (3)

The reward function R(n) , R(s(n)) is designed to both

maximize the CDF of the chosen user and minimize the ser-

vice time for all users.

R(n) = [Ûk∗(n)]1/wk∗ − α〈ν,T(n)〉,

where Ûk∗(n) = ik∗(n)/(M + 1) is the quantized CDF and

wk∗ the time allocation for the selected user; α is the delay

penalty factor, ν = [ν1, . . . , νK ]T , the delay priority weight-

ing, and T(n) = [T1(n), . . . , TK(n)]T .

This reward function construction allows the MDP prob-

lem to simplify to one of maximizing the quantized CDF

when α = 0, which becomes CDF scheduling in [3] as M →
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∞. The transition probability can be obtained as follows:

Ps,s′(a) = Pr[s′|s,a]

= Pr[i′1|i
′
l, ∀l ≥ 2, t′m, ∀m, ij , tj , ∀j,a]

× Pr[i′2|i
′
l, ∀l ≥ 3, t′m, ∀m, ij , tj , ∀j,a]× . . .

× Pr[i′K |t′m, ∀m, ij , tj , ∀j,a]×

× Pr[t′1|t
′
m, ∀m ≥ 2, ij , tj , ∀j,a]× Pr[t′K |ij , tj , ∀j,a]

As ik(n)’s are independent across k due to independent

fading of the users, and the user’s service time depends only

its previous state and the system’s action, we have:

Pr[i′k|i
′
l, ∀l > k, ij , tj , ∀j,a] = Pr[i′k|ik]

Pr[t′k|t
′
m, ∀m > k, ij , tj , ∀j,a] = Pr[t′k|tk,a]

⇒Ps,s′(a) =

K∏

k=1

Pr[i′k|ik]

K∏

k=1

Pr[t′k|tk,a]

Let s = [i1, i2, . . . , iK ; t1, t2, . . . , tk∗ , . . . tK ]T and a =
ek∗ . That is, user k∗ is chosen to be served.

Pr[t′k|tk,a] =







1 if (k 6= k∗, t′k = min {tk + 1, Tk,th})

or (k = k∗, t′k = 0)

0 otherwise

In the next time slot, the state vector becomes s
+ =

[i′1, i
′
2, . . . , i

′
K ; t1 + 1, t2 + 1, . . . , t′k∗ = 0, . . . , tK + 1]T .

⇒ Ps,s′(a) =

{∏K
k=1 Pr[i

′
k|ik] if s′ = s

+

0 otherwise

The optimal MDP policy is obtained from the following

Value Iteration recursion, which converges as l → ∞:

Vl(s) = max
a∈A

[R(s) + γ
∑

s
′∈S

Ps,s′(a)Vl−1(s
′)] (4)

4. LOW COMPLEXITY SOLUTION

The definition of the state space S according to (2) could lead

to an extremely large number of states:

|S| = (M + 1)K(Tth + 1)K = [(M + 1)(Tth + 1)]K

For instance, for a system with 10 users (K = 10), let the

quantization size to be M = 4, and the threshold be twice the

number of users Tth = 20, the number of states is then

|S| = (5× 21)10 ≈ 1020 !!!

Thus, the exact MDP approach is not feasible for practi-

cal systems with typical number of users. To find a low com-

plexity solution, we start from the following relation for the

optimal MDP policy π∗(s):

π∗(s) = argmax
a∈A

[R(s,a) + γ
∑

s
′∈S

Ps,s′(a)V
∗(s′)]

where V ∗(s) satisfies the Bellman’s Optimality Equation

V ∗(s) = max
a∈A

[R(s,a) + γ
∑

s
′∈S

Ps,s′(a)V
∗(s′)] (5)

By ignoring the second term in (5), which corresponds to

a small value of γ, we obtain an approximate policy π̃(s)

π̃(s) = argmax
1≤a≤K

[R(s, a)
︸ ︷︷ ︸

Ri(a)

+γ
∑

s
′∈S

Ps,s′(a)R(s′, a)

︸ ︷︷ ︸

Rf (a)

], (6)

where Ri(a) is the immediate reward and Rf (a) the expected

future reward if user a is currently selected. Note that in (6)

we use the user index a instead of the action vector a as the ac-

tion vector a defined in (3) has only one nonzero component

at some location a. Policy π̃(s) in (6) still suffers from a large

number of states. To avoid this problem, we approximate the

future reward portion Rf with an estimate as follows:

Rf (a) ≈ max
k

M∑

i′
k
=0

P [i′k|ik]R̂(k, a)

︸ ︷︷ ︸

R̄k(a)

, (7)

where R̄k(a) is the expected reward if user k is selected in the

next step; R̂(k, a) = R(s′, a) is the reward obtained if user k
is selected at the next step given that user a is selected in the

current step. Here we have:

s
′ = [i′,T′(k, a)]T , i′ = [i′1, i

′
2, . . . , i

′
K ]T

T
′(k, a) = [t′1|k,a, t

′
2|k,a, . . . , t

′
K|k,a]

t′j|k,a =







0 when j = k

1 when j = a

tj + 1 otherwise

Ri(a) = R(s, a) = [Ûa]
(1/wa) − α〈ν,T(a)〉

R̂(k, a) = [Û ′
k]

(1/wk) − α〈ν,T′(k, a)〉

Ûa = ia/(M + 1), Û ′
k = i′k/(M + 1)

In (7), the future reward is the maximum of all users’ ex-

pected rewards, which is a reasonable estimate since the fu-

ture user selection maximizes this reward. Finally, we obtain

the following policy:

Table 1. Approximate MDP Policy (AMDP)

a∗ = argmax
1≤a≤K

[R(s, a) + γmax
k

M∑

i′
k
=0

P [i′k|ik]R̂(k, a)]

(8)

In the AMDP policy (8), the delay penalty factor α con-

trols the delay-induced penalty. Similar to the exact MDP
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Fig. 3. System Selected SNR: CDF gets the best SNR, AMDP

can achieve MDP’s SNR with slightly higher delays.
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Fig. 4. Serving Time Delays: CDF has worst delays, MDP

delays are lowest, AMDP delays are slightly worse.

problem in section 3, this problem simplifies to CDF schedul-

ing in [3] when α = 0 and M → ∞. The discount factor

γ allows the effects of the user coherence time to be used to

further maximize the reward.

5. NUMERICAL RESULTS

We simulate a small system with parameters shown in table

2. In order to compare the AMDP policy and the MDP pol-

icy, we adjust the parameters of AMDP to achieve the same

SNR performance as MDP. We also plot the performance of

the Round-Robin (RR) and the Proportional Fairness (PF)

schemes for comparison. The parameters of the Proportional

Fairness Scheme are adjusted such that its delays are in the

same neighborhood of those in the AMDP scheme.

It can be seen from figure 3 that the unconstrained CDF

scheme achieves the best SNR performance. However, figure

Table 2. Simulation Parameters
Parameter Value

Number of users 2 K

Quantization size 7 M

Carrier frequency 1 GHz fc
Channel bandwidth 15 KHz

User speeds v1 = 2, v2 = 25 m/s

Average channel SNR 30 ρ
Serving time threshold 6 Tth

Time allocation fraction w1 = 0.5, w2 = 0.5
Delay priority weighting ν1 = 0.5, ν2 = 0.5
MDP discount factor 0.9 γ
Delay penalty factor 0.4 α

Fig. 5. Delay Comparisons for a 10-User System: AMDP

significantly reduces the delays compared to CDF.
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Fig. 6. Performance Comparisons for a 10-User System:

AMDP takes a small loss, but is much better than PF and RR.

4 shows that CDF-policy can have very large delay times

(more than 200 slots in this case). The MDP takes a per-

formance hit to in order to lower delay time. AMDP can

achieve the same performance as MDP at a slightly worse

delay performance, which is still much better than that

of the CDF policy. The PF scheme behaves worse than

MDP/AMDP schemes in both delay and SNR performance.

Both MDP/AMDP policies can drastically reduce the maxi-

mum delays as well as the delay variances.

In order to examine the performance of the AMDP policy

in larger systems, we simulate a system of K = 10 users

and M = 63 with user speeds ranging from v1 = 2 m/s

to v10 = 30 m/s. This system is already too large for the

exact MDP policy as discussed in section 4. In Figure 5, we

plot the delay performance for three users 1, 5, and 10, with

lowest, middle, and highest mobility. As expected, Figure 5

shows that the AMDP policy significantly reduces the service

delays for all users (less than 150 slots) compared to the CDF

policy (more than 10,000 slots in some cases). Figure 6 shows

the small performance loss incurred by AMDP compared to

the unconstrained CDF policy. The PF scheme with similar

delays as the AMDP policy behaves a lot worse than AMDP.

6. CONCLUSIONS

In this paper, we set up an MDP problem specifically for the

CDF-scheduling framework. We then demonstrate through

simulations that it can drastically reduce the user’s delay time

at a small cost to the throughput performance. We also de-

rive an Approximate MDP algorithm that can achieve sim-

ilar delay control with much lower complexity. Our future

work will include detailed mathematical analysis of the per-

formance bounds afforded by this low complexity policy.
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