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ABSTRACT

Testing the stationarity of stochastic processes is required in a

variety of signal processing applications. When dealing with

real-world problems, the presence of outliers and impulsive

(heavy-tailed) noise causes classical stationarity tests to break

down. In this work, a set of robust stationarity tests that are

based on a sphericity statistic test (SST) in the frequency do-

main is proposed. Different possible approaches are inves-

tigated and compared to existing robust and non-robust sta-

tionarity tests in terms of the receiver operating characteris-

tic (ROC). In addition to extensive simulations, a real-world

data example of a malfunctioning window regulator motor,

for which the dominant frequencies show a modulating char-

acter that results in a non-stationary signal, is investigated.

Both for simulated and real-world data, the proposed meth-

ods significantly outperform existing approaches.

Index Terms— stationarity, KPSS, SST, robustness, M-

estimator, hypothesis testing.

1. INTRODUCTION

Stationarity is an important property of stochastic processes

and testing for stationarity is required in many signal pro-

cessing applications. For example, in automotive industry, an

indication of malfunction of window regulator motors is the

modulating character of the frequencies that contain most of

the sound power. This modulating character results in a non-

stationary signal. In the literature, to test for the stationarity

of a stochastic process, there exist two important definitions

of stationarity: strict stationarity, which constrains all statis-

tical properties to be time invariant. This, in practice, is too

difficult to test for. second-order stationarity or wide-sense

stationarity (WSS), which implies the first and second order

moments and the covariance function to exist and to be time-

invariant.

Different methods have been developed which test for

WSS [1–3]. An early contribution that is based on testing for

a unit root was given in [1]. However, the power and size of

this test depend on the assumed model of the process of inter-

est. Testing for the null hypothesis of stationarity against the

alternative of a unit root [2], which overcomes this problem,

has become a standard approach. A new stationarity test was

presented in [3]. It is based on a sphericity statistic in the

frequency domain (SST) that compares favorably to [2] for

non-stationary processes other than the random walk.

In real-world scenarios, measurements are often made in

a harsh environment, e.g., in manufacturing halls, which pro-

duces heavy-tailed noise in the measurements. The presence

of outliers and impulsive (heavy-tailed) noise has also been

reported in many other important signal processing applica-

tions [4–9] and can cause classical stationarity tests to break

down. Recently, robust stationarity tests have been proposed

[10, 11] that are based on [2]. They replace the centered and

detrended residuals by the indicator function of the difference

of these residuals and their mean [10] and the ranks of the

residuals [11], respectively. These robustifications show bet-

ter performance than [2] when having to deal with impulsive

noise, but have not been designed to yield good results for

outliers in non-stationary processes. In this work, we analyze

the robustness of the SST and propose different approaches

of robustification.

Our contributions are: a proof of the increase of the Type

I error rate for the SST in case of additive outliers; four new

robust SST-based stationarity tests and a validation of these

presented methods via simulated data and a real-world data

application.

The paper is organized as follows. Section 2 briefly re-

views the SST and illustrates the increase of the Type I error

rate for additive outliers. Section 3 presents the proposed

robust stationarity tests. Section 4, compares the proposed

methods to existing approaches via extensive simulations and

a real-world data example. Section 5 concludes the paper.

2. ROBUSTNESS ANALYSIS OF THE SPHERICITY

STATISTIC TEST (SST)

2.1. The Sphericity Statistic Test (SST)

The sphericity statistic test (SST) is a frequency domain sta-

tionarity test that is defined as [3]

SM (ωi) =
AM (CXX(ωi))

GM (CXX(ωi))

H0

≶
H1

γi, (1)

where H0 is the hypothesis that the random process X(t),
t ∈ Z is stationary andH1 represents non-stationarity. Here,
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AM (CXX(ωi)) =
1

M

M
∑

k=1

C
(k)
XX(ωi) (2)

and

GM (CXX(ωi)) =

(

M
∏

k=1

C
(k)
XX(ωi)

)

1

M

(3)

are the arithmetic and geometric means; M is the number of

segments and C
(k)
XX(ωi) is the spectrum of the k-th segment

of X(t) evaluated at frequency ωi. γi is the critical value of
the test for frequency ωi. The thresholds for the test are based

on a 5 % level of significance that is estimated empirically [3].

To test Eq. (1) for all frequencies, a suitable projection of the

statistics onto one dimension is the mean over all frequen-

cies [3]. Estimates of the spectrum are obtained by kernel

smoothing of the periodogram using a rectangular window.

2.2. Additive Outlier Model

Various kinds of contamination in real-world applications can

be modeled as additive outliers [6, 12], i.e.,

Y (t) = X(t) + ξp(t)ε(t), (4)

with X(t) being the outlier free time series and ε(t) the con-
tamination process. ξp(t) = 1 with probability p and ξp(t) =
0 with probability (1 − p). We generate isolated and patchy

outliers by letting the event ξp(t) = 1 occur either isolated

or in patches. In case of patchy outliers, the patch length l is
modeled by an exponential distribution with probability dis-

tribution f(l;β) = 1
β e

−l/β . For the robustness evaluation of

stationarity tests, ε(t) must be non-stationary when X(t) is
stationary and vice-versa.

2.3. Increase of the Type 1 Error Rate for the SST for

Additive Outliers

In the sequel, we show the non-robustness of the SST against

even a single additive outlier under the following assump-

tions: (i)X(t) and ε(t) are statistically independent; (ii)X(t)
is a stationary process and (iii)M > 1. Let ξp(t0) = 1, where
t0 is a sample in segment s and ξp(t 6= t0) = 0 in Eq. (4)

model the occurrence of a single outlier. Then, the following

holds for the expectations of the spectra of X(s)(t), Y (s)(t)
and ε(s)(t):

E[C
(s)
Y Y (ωi)] = E[C

(s)
XX(ωi)] +E[C(s)

εε (ωi)] ≥ E[C
(s)
XX(ωi)]

(5)

The expectations of the arithmetic and geometric means are

thus:

E[AM (CY Y (ωi))]=E





1

M



C
(s)
Y Y (ωi) +

M
∑

k=1,k 6=s

C
(k)
XX(ωi)









E[GM (CY Y (ωi))]=E









C
(s)
Y Y (ωi) ·

M
∏

k=1,k 6=s

C
(k)
XX(ωi)





1

M







(6)

Re-writing Eq. (6) in terms of Eq. (5) under the assumptions

(i) and (ii) yields

E[AM (CY Y (ωi))]=E

[

1

M

M
∑

k=1

CXX(ωi)

]

+ E

[

C
(s)
εε (ωi)

M

]

E[GM (CY Y (ωi))]=E

[

(

CXX(ωi)
M+ C(s)

εε (ωi)CXX(ωi)
M−1

)
1

M

]

(7)

The Type 1 error rate is increased when

E[AM (CY Y (ωi))]

E[GM (CY Y (ωi))]
> 1. (8)

E.g., whenX(t) and ε(t) are zero-meanwhite noise processes

E[AM (CY Y (ωi))]

E[GM (CY Y (ωi))]
=

σ2
X + σ2

ε/M

(σ2M
X + σ2

εσ
2(M−1)
X )

1

M

, (9)

which for σ2
ε = σ2

X , i.e., contamination of the same power as

the uncontaminated process reduces to

E[AM (CY Y (ωi))]

E[GM (CY Y (ωi))]
=

1 + 1
M

2
1

M

> 1.

Showing that Eq. (8) holds for σ2
ε > σ2

X can be derived from

Eq. (9) analogously. More general statements can be derived

from Eq. (7) and Eq. (8).

3. PROPOSEDMETHODS

3.1. Method 1: Filter-Cleaner (ACM-SST)

An intuitive way to deal with outliers in dependent data is to

perform a data cleaning operation [6,9]. Filter-cleaning algo-

rithms [6, 9, 13, 14] “clean” Y (t) from contamination by re-

placing corrupted samples with an estimate of X(t) obtained
from the prediction of a robust filter and leaving Y (t) un-

touched, otherwise. The first proposed robustification of the

SST is therefore given by combining a filter-cleaner with the

classical SST. In this paper, we apply the approximate condi-

tional mean (ACM), a state-space representation based filter-

cleaner, which has been shown to be optimal in case of a

Gaussian distributed state prediction density [13]. Obviously,

the performance of Method 1 is directly dependent on the per-

formance of the applied filter-cleaner.

3.2. Method 2: Robust Spectrum Estimation (ℓp-SST)

Eq. (1) dictates that the SST inherits the non-robustness of

the spectrum estimates Ĉ
(k)
XX(ω). A straight forward robus-

tification is therefore to replace the non-robust spectrum es-

timates by their robust counterparts. In this paper, we adapt

the ℓ1-norm M-periodogram proposed in [15]. This estimate

solves the ℓ1-norm minimization of a (nonlinear) harmonic
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regression, which results in a spectrum estimate that is robust

against additive outliers. For details, see [15]. The robustness

of Method 2 is thus directly dependent on the chosen spec-

trum estimator.

3.3. Method 3: Robust Means (Mean-SST)

A different view on the SST is given by interpreting the ge-

ometric and arithmetic means as a source of non-robustness.

We suggest to replace the AM (ωi) and GM (ωi) by their ro-

bust counterparts. In particular, AM (ωi) is replaced by an

M-estimator of location [6] and a robustification of GM (ωi)

is obtained via eµ̂rob,i(log(ĈXX (ωi))). The robustified SST is

therewith

ŜM,rob(ωi) =
µ̂rob,i(ĈXX(ωi))

eµ̂rob,i(log(ĈXX(ωi)))

H0

≶
H1

γi, (10)

Method 4 requires that the spectrum estimate ĈXX(ωi) is

non-zero ∀i.

3.4. Method 4: Weighting of Segments (Seg-SST)

When dealing with patchy outliers, the degree of contamina-

tion of the segments in the observed time series can strongly

vary [9, 16]. We assess the quality of the segments by the

following measure

∆(k)
σ = σ̂

(k)
non-rob − σ̂

(k)
rob , k = 1, . . . ,M (11)

where σ̂
(k)
non-rob is, e.g., the sample standard deviation of seg-

ment k and σ̂
(k)
rob is its robust counterpart, e.g., the normalized

median absolute deviation [6]. With∆σ = (∆
(1)
σ , . . . ,∆

(M)
σ )T ,

an M-type weighting function

W (k)

(

∆
(k)
σ − µ̂rob(∆σ)

σ̂rob(∆σ)

)

that assigns weights to the segments depending on the devia-

tion of the quality measure from the median absolute devia-

tion is constructed. W (·) can be chosen, e.g., of the Huber-

type with parameters as described in [6]. Method 4 requires

the signal to have a rate of at least 50 % of clean or only neg-

ligibly contaminated segments.

3.5. Method 5: Combination of Method 2 and Method 4

As Methods 2 and 4 are independent of each other, it is pos-

sible to down-weight the influence of contaminated segments

by Method 4 in addition to robust spectrum estimation. This

is useful when outlier patches contaminate more than 50 %

of a given segment, which yields non-robustness of this seg-

ments spectrum estimate, even when using a robust estimator.

4. RESULTS

4.1. Simulations

X(t) was generated for five stationary ARMA-models from

[3]: (i) iid Gaussian: X(t) = Z(t); (ii) AR(1): a1 =
0.5;X(t) = 0.5X(t1) + Z(t); (iii) AR(1): a1 = −0.5; (iv)
MA(1): b1 = 1, X(t) = Z(t) + Z(t1); (v) AR(5): X(t) =
0.5X(t1)0.6X(t2)+ 0.3X(t3)0.4X(t4)+ 0.2X(t5)+Z(t)
and eight non-stationary processes from [3]: (i) ARIMA(0,

1, 0), X(t) = X(t1) + Z(t); (ii) ARIMA(0, 2, 0); (iii)

ARIMA(1, 1, 0) with a1 = 0.5; (iv) ARIMA(0, 1, 1) with

b1 = 1; (v) ARIMA(1, 1, 1) with a1 = 0.5, b1 = 1; (vi)
TVAR(1) with a1 varying linearly between -0.5 and 0.5; (vii)
GARCH: AR(1) model with a1 = 0.5 where the variance of

the innovations varies linearly from 0.5 to 2; (viii) GARCH:

AR(1) model with a1 = 0.5 where the variance of the inno-

vations varies linearly from 0.1 to 1.

The contaminating signal as described in Eq. (4) was var-

ied as follows: For stationaryX(t), ε(t) is an ARIMA(0,1,0)

and for non-stationaryX(t), ε(t) is iid. In both cases, the dis-
tribution of ε(t) is Gaussian, where [µ;σ] are varied from 0 to

10 with a step-size of 0.1. The outlier occurrence probability

p was varied from 0 to 0.25 with a step-size of 0.05. Patchy

outliers of different lengths were created by varying the patch

length’s scale parameter β ∈ {0.2; 2}. Isolated outliers were

obtained by letting the event ξp(t) = 1 follow an iid Bernoulli

distribution with outlier occurrence probability p.
To evaluate the performance, the receiver operating char-

acteristic (ROC) is calculated, where the average is taken over

1000 MC realizations of all 13 processes described above.

The results for the clean data case (p = 0) are displayed in

Fig. 1. It can be seen that all methods provide a correct deci-

sion on the stationarity of X(t), i.e., PCD ≈ 1 given a false

alarm probability PFA > 0.05, except for Method 3 (Mean-

SST). The reason for the poor performance of this method is

that the robust M-estimator of location falsely down-weights

spectra in case of non-stationaryX(t).

Fig. 1. Average ROC of the stationarity tests for the clean

data case.

As shown in Fig. 2, the power of the non-robust tests,

i.e.,the SST and KPSSS, degrades drastically in the presence
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of patchy outliers and even the rank based KPPS test [11], de-

noted as Rob-KPSS, does not provide robustness, with only

a slightly better performance, compared to the KPSS. Fig. 3

displays the effect of isolated outliers on the stationarity tests.

These are most demanding for all tests, as the outliers are

distributed evenly over the entire signal length. This causes,

e.g., Method 4 (Seg-SST), which is based on down-weighting

contaminated data segments, to break down. Best perfor-

mance across all scenarios is experienced by Method 5 (Seg-

ℓp-SST), which combines robust spectrum estimation with

segment quality information (see Eq. (11)).

Fig. 2. Average ROC of the stationarity tests for patchy addi-

tive outliers.

Fig. 3. Average ROC of the stationarity tests for isolated ad-

ditive outliers.

Fig. 4 displays the probability of correct decisionPC w.r.t.

the outlier occurrence probability p. In this setup, the ratio

of the block length of samples containing iid outliers succes-

sively increased for 0 ≤ p ≤ 0.4. The highest breakdown

point (≈ 0.25) was obtained by ℓp-SST and Seg-ℓp-SST. This
is explained by the fact that Eq. (1) contains a ratio of two

spectra, each of which are estimated by a robust estimator

with breakdown point 0.5 [15], thus limiting the achievable

breakdown point to 0.5.

4.2. Real-Data Example: Window Regulator Motor

Window regulator motors are designed to produce as little

noise as possible. Flaws in the mechanics of the motor can

Fig. 4. Probability of correct decision PC on the stationarity

ofX(t) w.r.t. the outlier occurence probability p.

be contributed to amodulating character of dominant frequen-

cies. Whereas the noise floor in the acoustic chambers is quite

low, often measurements must be made in a noisier environ-

ment, e.g., in manufacturing halls. Figure 5 shows the correct

rejection rate of the stationary null PC, in dependence of the

SNR for the above presented tests. The measurements were

take in an anechoic chamber with a sampling frequency of 48

kHz and AWGN of different powers was added.

It can be seen that all robustifications of the SST outper-

form the classical SST in this example, except for Method

3, which again falsely interprets non-stationarity as outliers.

Due to the constant noise level, Method 4 shows performance

only similar to Rob-KPSS. Methods 1, 2 and 5 (ACM-SST,

ℓp-SST and Seg-ℓp-SST) achieve PC ≈ 1 for all SNR values.

Fig. 5. PC w.r.t. SNR for a malfunctioning window regulator

motor, for which the dominant frequencies show amodulating

character that results in a non-stationary signal.

5. CONCLUSIONS

The need for robustification of the SST was demonstrated and

new approaches for robust stationarity testing were presented.

Performance was evaluated and compared to existing station-

arity tests for a large range of signals and contaminating pro-

cesses. A real-data example has illustrated the applicability

of the tests in industrial applications.
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