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ABSTRACT 

New algorithm is proposed for recognition of linear digital 

modulation constellations. Its essence is to approximate the 

likelihood-based approach. Log-likelihood function is 

approximated by a truncated circular harmonic expansion. If 

only the first nonzero harmonic is retained in the expansion, 

simple solutions for dealing with phase and frequency 

offsets are obtained. Computer simulations confirmed 

applicability of the proposed method for M-PSK and 

16-QAM signals. 

 

Index Terms— Signal classification, modulation 

recognition, digital modulation, circular harmonic expansion 

1. INTRODUCTION 

Automatic modulation recognition (AMR) is an important 

task in such application areas as spectrum surveillance or 

cognitive radio. To accomplish this task in real-world 

conditions, many methods were proposed—see, for 

example, an extensive survey in [1]. According to this 

survey, two main classes of algorithms can be distinguished. 

Likelihood-based (LB) methods are based on the theory of 

statistical hypothesis testing, while feature-based (FB) 

methods rely on specific signal features, often chosen by 

heuristic reasoning. LB methods potentially offer better 

performance but they require a lot of computations, 

especially when the analyzed signal has many unknown 

parameters. FB methods are simpler, but the cost of this 

simplicity is higher error probability. 

Approximation of the likelihood function (LF) in the 

form of truncated circular harmonic expansion (CHE) allows 

to capture its main features and greatly reduces the amount 

of required calculations. In [2] CHE was used for blind 

estimation of phase and frequency offsets, here we analyze 

its use for AMR as an approximation of several LB methods. 

2. PROBLEM FORMULATION AND MAXIMUM 

LIKELIHOOD SOLUTION 

The AMR problem is formulated as follows. We assume that 

the symbol rate is known or have been estimated (it can be 

done without knowledge of signal constellation, see [3] for 

an example). Observation { }
k

x�  is a sequence of baud-rate 

samples after a matched filter: 

 0( )fj k

k k k
x a e n

ϕ + ϕ
= +� � � ,     k = 0, 1, …, K − 1, (1) 

where 
k

a�  are the data symbols independently and 

equiprobably drawn from one of P possible modulation 

constellations ( ) ( ) ( )

1 2{ , , , }
p

p p p

M
C C C� � … , Mp is the p-th 

constellation size, p = 1, 2, …, P, ϕ0 is the phase offset, ϕf is 

the intersymbol phase shift due to the frequency offset ∆f 

(ϕf = 2π∆fT, where T is the symbol period), 
k

n�  are the 

samples of complex white Gaussian noise with variance σ2
. 

The signal and noise levels are assumed to be known. 

Signal-to-noise ratio (SNR) is defined as the ratio between 

variances of signal and noise components: 

 
2 2SNR

k
a= σ� . (2) 

The goal is to decide from which constellation data 

symbols 
k

a�  are taken. 

According to the maximum likelihood (ML) approach 

we should choose the hypothesis p̂  that maximizes the LF, 

or its logarithm (log-likelihood function, LLF) that is usually 

more convenient, conditioned on the observed sample 

sequence: 

 ( ) ( )ˆLLF |{ } LLF |{ }
k k

p x p x p≥ ∀� � . (3) 

LLF for hypothesis p constitutes a logarithm of joint 

probability density function (PDF) for K observed samples. 

For known phase and frequency offsets it can be written 

as [4], [5] 
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where LLF( | )
k

p x�  is a log-PDF for a single sample with 

zero phase offset: 
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As phase and frequency offsets are unknown in the 

majority of real-world scenarios, LF should be averaged or 

maximized over every parameter. These approaches are 

known, respectively, as average likelihood ratio test and 

generalized likelihood ratio test [1]. Any mix of these 

approaches (LF is averaged over a subset of parameters and 
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maximized over remaining parameters) is called hybrid 

likelihood ratio test [1]. 

Two situations are considered in this paper (they seem 

to be the most reasonable from a practical standpoint): 

a) Frequency offset is known, phase is treated as a 

uniformly distributed random variable (LF is phase-

averaged) [6]: 
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b) Frequency offset is estimated and phase is treated as 

a uniformly distributed random variable (LF is maximized 

over frequency offset and phase-averaged):  
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Note that to perform phase averaging in (6) and (7), we 

transform LLF into LF, average it over ϕ0 and then 

transform the result back to log-domain. 

Averaging in (6) and, especially, maximum search in (7) 

are extremely time-consuming. For that reason, unknown 

phase offset is often treated by differential processing [4]. 

As for frequency offset, as maximum search in (7) is 

computationally prohibitive, it is usually treated by using 

blind frequency estimation algorithms [7]. 

In the following sections, we propose approximations of 

(5)–(7) with reasonable computational complexity. 

3. CIRCULAR HARMONIC EXPANSION OF LLF  

Straightforward use of (5) for calculating LLF requires large 

amount of computations, especially when averaging or 

maximum search over parameters is needed (see (6) and 

(7)). In this section it will be shown how LLF can be 

expanded into a series that may be subsequently truncated to 

simplify its calculation. 

First of all we explicitly separate magnitude and phase 

of the samples x� , so that LLF (5) for a single sample 

becomes 

 ( ) ( )LLF | LLF | j
p x p re

φ=� , (8) 

where r x= �  and arg xφ = � . 

The dependence of LLF (8) on the phase φ is a periodic 

function with period Θ(p)
 defined by the rotational symmetry 

of the p-th constellation. For M-PSK, Θ(p)
 = 2π/M, for QAM 

with square or cross constellations Θ(p)
 = π/2. As a result, 

LLF can be expanded in the Fourier series along phase φ, 

that gives its presentation in the form of circular harmonic 

expansion [8]: 
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where ( ) ( )p

n
A r  and ( ) ( )p

n
rθ  are (depending on the signal 

sample magnitude r) magnitude and phase of the n-th 

harmonic of the Fourier series: 
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It should be noted that for a certain angular position of 

standard PSK and QAM constellations all complex 

coefficients (10) of the Fourier series appear real, so that 
( ) ( ) 0p

n
rθ =  or π. In the following formulas we assume for 

compactness that ( )
( ) 0

p

n
rθ = , so that ( )

( )
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n
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negative. We will refer to these alternating versions of 
( )

( )
p

n
A r  as weighting functions. 

In such a way LLF (5) for the whole signal sequence 

{ }
k

x�  can be written in the following form: 
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where Re denotes the real part of a complex variable, and 
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It is seen from (12) that complex functions 
n

f�  possess 

the following important property (ϕ is arbitrary angle): 
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Due to this property, we can rewrite (11) in the form 

 

( )

( )
{ }( )

0

( )

0

( )

0

2( )

0 ( )

1

2

( ) ( )

0 ( )
1

LLF |{ }, ,

{ }
Re

2

21
(0) Re ,

2

p f

p

k f

np
j

jkk p

n k

n

n
j

fp p

n p
n

p x

f x
e f x e

n
F e F

π ϕ∞ −
− ϕΘ

=

π ϕ∞ −
Θ

=

ϕ ϕ

= +

π ϕ 
= +  

Θ 

∑

∑

�

�
� �

�  (14) 

where 
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is the spectrum of nonlinearly transformed signal sequence 
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Weighting functions ( ) ( )p

n
A r  can be implemented using 

lookup tables, so presenting the LLF in the form (14) leads 

to convenient computation procedures. It does not reduce 

the amount of computations but allows to truncate the series 

as will be shown in the next section. 
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Figure 1.  Error probability of recognition (coherent case) 

4. PROPOSED RECOGNITION METHODS 

Circular harmonic expansion of LLF allows unified 

organization of its calculation for all considered 

constellations but averaging and/or maximization over phase 

and frequency offsets are still difficult. But as circular 

harmonic magnitudes decrease with their order it is possible 

to use LLF approximations by truncating the series in (14). 

Especially simple approximation results from retaining 

in (14) only the angle-independent term (n = 0) and the first 

harmonic (n = 1): 
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This approximation can be directly used instead of (5) 

when phase and frequency offsets are known. Note that to 

calculate (17) only two lookup tables for every hypothesis are 

needed that leads to a computationally efficient procedure. 

Averaging or maximization over phase and frequency 

offsets leads to the following solutions: 

a) Averaging over phase offset, frequency offset is 

known (approximation of (6)): 
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where I0 is the modified Bessel function of the first kind of 

order zero. 

b) Maximization over frequency offset, averaging over 

phase offset (approximation of (7)): 
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Figure 2.  Error probability of recognition (phase averaging) 

Maximum search in (19) is performed for magnitude 

spectrum of nonlinearly transformed signal, so it can be 

efficiently implemented using fast Fourier transform 

algorithms. 

5. SIMULATION RESULTS  

To assess performance of proposed AMR methods, 

computer simulation was performed. In all cases sequences 

of K = 1000 symbols were used. The curves show 

dependences of recognition error probability on SNR for 

various signal constellations. The set of tested hypotheses 

included 2/4/8-PSK and 16-QAM. 

The results for coherent case (phase and frequency 

offsets are known) are shown in Fig. 1. Dashed lines 

correspond to the ML method (5), solid—to the proposed 

approximation (17). The curves show that the proposed 

method allows to distinguish between all constellations, but 

the changes in performance (relative to the ML algorithm) 

depend on particular modulation modes: for all PSK signals 

SNR thresholds where error probability drops below 10
−3

 

became lower than for the ML method, and only for 

16-QAM SNR threshold moved slightly (about 1 dB) higher. 

There is no contradiction here, because ML approach 

minimizes mean recognition error probability averaged over 

the whole set of a priori equiprobable hypotheses, so any 

approximate implementation of ML method may lead to 

better results for a few (but not all) hypotheses. Also we can 

see that for very low SNR, unlike the ML case, decisions in 

favor of different hypotheses are not equiprobable: they are 

roughly evenly split between BPSK and 16-QAM, while 

QPSK and 8-PSK never win. 

The results for the case of phase averaging (frequency 

offset is known) are shown in Fig. 2. Dashed lines 

correspond to the ML method (6), solid—to the proposed 

approximation (18). The curves show that, similar to the 

coherent case, the proposed algorithm allows recognition of  
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Figure 3.  Error probability of recognition (phase averaging with 

frequency maximization) 

the considered hypotheses. All performance curves for PSK 

signals show lower error probability than for the ML 

method, and only for 16-QAM there is performance loss 

about 1 dB. Also, we can see that at very low SNR almost 

all decisions of the proposed algorithm are in favor of 

16-QAM hypothesis (recognition errors for this signal tends 

to zero as SNR drops below −15 dB). 

The results for the case of phase averaging with 

frequency maximization are shown in Fig. 3. The curves 

correspond to the proposed approximation (19). Results for 

the ML method are not shown as the maximum search over 

frequency offset values in (7) is computationally prohibitive. 

Comparison between Fig. 3 and Fig. 2 shows that the 

performance loss about 1…2 dB is observed only in the case 

of 8-PSK modulation. Also, at very low SNR, bias of the 

decisions towards 16-QAM hypothesis became even 

stronger than in Fig. 2 (recognition errors for this signal 

quickly disappear as SNR drops below −24 dB). 

In Fig. 4, error probabilities for all considered methods 

averaged over all modulation modes (as ML approach 

assumes equal a priori probabilities for all hypotheses) are 

shown. Comparing these curves we can see that in all cases 

except unknown frequency offset high-SNR performance is 

very close to each other, the losses do not exceed 0.5 dB. In 

the case of unknown frequency offset, the mean loss is about 

1.5 dB.  

Unfortunately, the formulas (17)–(19) can not be 

directly used to recognize higher-order QAM 

constellations—one circular harmonic is not enough for 

them. Adaptation of the presented idea to higher-order QAM 

constellations is the subject of our further studies. 

6. CONCLUSION  

The proposed approximation of LLF allows computationally 

efficient implementation of linear digital modulation  

-10 -5 0 5
10

-3

10
-2

10
-1

10
0

SNR, dB

P
e
rr

 

 

ML coherent

CHE coherent

ML phase-averaged

CHE, phase-averaged

CHE, phase and freq.

 
Figure 4.  Mean probabilities of recognition error  

recognition. It is especially attractive in the case of unknown 

phase and frequency offsets, as the proposed algorithms (18) 

and (19) effectively combine LLF calculation with phase 

averaging and maximization over frequency offset. 

Possible direction of future work is optimization of 

weighting functions to maximize probability of correct 

recognition and to allow recognition of higher-order QAM 

constellations. Also, potential benefits from the use of more 

than one circular harmonic need to be investigated. 
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