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ABSTRACT

We show that the optimal design of non-randomized discrete
sequential tests, i.e., tests whose test statistics take on only a
countable number of states, can be modeled as a mixed integer
linear problem. This is done by reformulating the difference
equations describing the random walk on the integer lattice
in terms of linear mixed integer constraints. We outline the
general procedure and give a simple example to show how
the proposed method can be used in practice.

Index Terms— detection, mixed integer programming,
random walk, sequential analysis

1. INTRODUCTION

Due to its superior performance in time-critical environments,
sequential testing [1] has attracted increased attention in re-
cent years [2]. In many areas, sequential techniques have suc-
cessfully been applied to reduce delays and/or increase detec-
tion performance. Among the driving applications in signal
processing are spectrum sensing in cognitive radio [3, 4] and
distributed detection in sensor networks [5, 6]. On the theoret-
ical side, progress has been made in establishing performance
bounds and asymptotic optimality [7]. The design of strictly
optimal sequential tests, however, is still an open problem and
is rarely addressed in the literature.

In this paper, we present an approach to design optimal
discrete sequential tests using the framework of mixed integer
programming. The recent progress in this branch of optimiza-
tion theory resulted in a multitude of free and commercial
solvers that are able to deal with small to medium sized prob-
lems in a sufficiently efficient way. By embedding discrete
sequential testing in this rapidly evolving framework, we pro-
vide a generic design procedure that, for better or worse, does
not rely on specific characteristics of a particular application.
To the best of our knowledge, this is the first attempt to estab-
lish a connection between mixed integer programming and
sequential testing.
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We use the term discrete sequential tests to refer to tests
whose test statistic can only take on a countable number of
states such that every state can be mapped to an integer value.
Theoretically, this holds true for every digital implementa-
tion of a sequential test. Realistically, however, this work
targets scenarios where only a few bits are used for quantiza-
tion. In distributed sensor networks, for example, each sensor
might transmit a binary valued local decision to a fusion cen-
ter, which in turn performs a sequential test on these messages
— see the example in Section 4. In fact, there seems to be a
tendency in distributed detection to use rough quantizations
in order to reduce the communication load in large networks.
The widely predicted rise in the prevalence of such networks
emphasizes the need for efficient and powerful design algo-
rithms for discrete tests.

The paper is organized as follows. In Section 2, we
present the problem formulation and state the difference equa-
tions describing the general discrete sequential test. Based
on these equations, we derive a mixed integer programming
formulation of the test design problem in Section 3. The
procedure is illustrated with an example in Section 4.

A word on notation: Boldface lower case letters  denote
vectors and boldface upper case letters X matrices. The ith
entry of a vector is written as [z];. The identity matrix is
denoted by I and the all-ones vector by 1. For the sake of a
more compact notation, the dimensions are not always stated
explicitly, but should be obvious from the context.

2. SYSTEM MODEL AND PROBLEM
FORMULATION

We consider a sequence of random variables (X,,),>1, de-
fined on some product probability space (2>°, A, P). Our
aim is to perform a sequential statistical test between the two
simple hypotheses
7‘[0: P:PO and 7‘[1: P:P1.

The test is performed by observing a sequence of discrete test
statistic (T7,),,>1, where each T,, : ™ — Z maps the obser-
vations X1, ..., X, to an integer z,,. Without loss of gener-
ality, we assume that positive integers are associated with a
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decision for #; while negative integers are associated with a
decision for H, meaning that if the test stops at a state T, it
decides for Hq, if T;, > 0, and for H,, if T,, < 0. The state
T, = 0 corresponds to events that do not allow any inference
about the true hypothesis.

In accordance with Wald’s sequential test [1], one can
think of 7;, as a quantized log likelihood ratio. This, how-
ever, is by no means the only meaningful test statistic. To
interpret binary messages as quantized log likelihood ratios,
for example, is usually more misleading than helpful. If Q2 is a
finite set, one can even avoid the use of a statistic and simply
enumerate all possible outcomes directly. In order not to in-
troduce unnecessary conceptual limitations, we do not specify
the test statistic explicitly.

The more relevant question in sequential detection usu-
ally is not what test statistic to use, but when to stop the test.
In this work, we consider only non-randomized tests. This
means that at every state 7T;, the test either stops or continues
with probability one. The possibility to include randomized
stopping rules is briefly discussed in Section 3. The stopping
rule is in the following denoted by § : Z — {0, 1}, where
0(z) = 1 corresponds to stopping the test if the test statistic
equals z and 6(z) = 0 to continuing it.

Finally, we assume that the probability measures Py
and P; can be specified via a set of transition probabilities
{ax(z,y) : z,y € Z}, where k = 0, 1 and

@ (2,Yy) = Po(Ths1 =y|Th =2) VYn>0.

Note that the transition probabilities are assumed to be inde-
pendent of the time index n. This implies stationarity, but not
necessarily independence of the sequence (X,,)>1.

To describe the dynamic behavior of the test, we intro-
duce the quantities py(z), which denote the probability under
Py, that the test ends with a decision for H, given that the cur-
rent test statistic equals z. Due to the stationarity assumption,
these probabilities are time invariant and related via

(1 - 6(Z)) Z QK(Z7y)pk(y)7 z2>0
YEL
pk(z) = ZQk(Zvy)pk(y)a z=0
YEL
5(2) + (1-8()) Y ar(z9)pely), = <0.
YEL
(1)

Equation (1) is the well-known difference equation describ-
ing the dynamics of a generalized random walk on the integer
lattice [8]. The role of the stopping rule §(z) in (1) is to de-
clare terminal states. If 6(z) = 1, the state z terminates the
random walk, otherwise it continues, according to the transi-
tion probabilities. Note that we do not allow the test to stop
if there is no preference for either hypothesis, i.e., 6(0) = 0.
The error probabilities of the first and second kind are given
by 1—po(20) and p; (zo), respectively, where zo = T denotes
the initial state of the test.

In a similar way, the expected run length n(z) of a test
starting at state z is governed by the difference equation

n(z)=(1-6(x) 1+ alzyny) |. @

YEL

Again, §(z) determines whether the test stops immediately,
resulting in an average run length of zero, or makes a tran-
sition to some state y with corresponding average run length
n(y). Note that in (2), we leave the probability measure
underlying the test unspecified. Common choices are F or
P; to consider the run length under each hypothesis. In a
Bayesian framework, one would choose the sum measure
moPy + (1 — mp) Py, 7o € (0,1). In general, any measure that
can be represented by time-invariant transition probabilities
can be considered.

The difference equations (1) and (2) sufficiently describe
the sequential test in terms of its run length and error probabil-
ities. They provide the basis for the mixed integer formulation
given in the next section. In particular, we present solutions
to the classic sequential detection problem
pi(z0) < B (3

méin n(zo) st po(z0) >1—q,

and the sequential equivalent to the Neyman-Pearson test

min pi(20) st po(z0) >1—a,

n(zo) <v 4
where «, 8 € (0,1) and v > 0. The solution of (3) and
(4) is an optimal stopping rule 6* or, equivalently, an optimal
stopping region S* of the form

S*'={z€Z:6(2)=1}.

At every time instant n, the optimal test continues, if 7;, €
S* =7\ 8*, and stops if T}, € S*.

So far we have implicitly assumed that the optimal test
stops with probability one, i.e., eventually hits the stopping
region. Tests for which this assumption does not hold exist,
but are rather pathological and require an entirely different
problem formulation, since their average run length is infinite.
We therefore exclude them from our treatment.

3. SEQUENTIAL DETECTION AS A MIXED
INTEGER PROBLEM

The mixed integer structure of the sequential test is obvious
from (1) and (2), where § and p; are the unknown quanti-
ties. However, the bilinear terms on the right-hand side cause
problems in the sense that they are hard to tackle numerically
and are not supported by standard solvers. In this section, we
restate the equations in a form that can be solved readily via
mixed integer linear programming (MILP).
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3.1. Reduction to a finite-dimensional state space

Before applying any numerical optimization technique to the
sequential detection problem, we have to restrict its state
space to a set of finite cardinality. This means that we have to
determine some N C Z, with |[N| < oo, for which we leave
the stopping rule undetermined. For all z € Z \ NV, however,
the stopping rule has to be chosen in advance. In other words,
a subset S C S* of the optimal stopping region has to be
known a priori.

Without loss of generality, we assume the initial estimate
of the stopping region to be of the form

0(z)=1, for |z]> A

where A is a positive integer. Since this renders all states
|z| > A equivalent to the states A or —A, it allows us to
consider only the finite number of states z € Ny = {z € Z :
|z2| < A}. The transition probabilities have to be adjusted
accordingly to

ae(z,y) = (2, ), |yl < A

iz, £A) =Y qilz, £1).
1=A

Choosing A may appear critical at first glance, but usually
does not pose a major problem. In the case of a quantized
probability ratio test, for example, any upper bound on the
absolute value of the optimal thresholds can be used. Such
bounds can be obtained from Wald’s approximations [1] and
similar results [9]. In cases where bounds are not available,
one might even work with just an initial guess, which can
then be altered, depending on the outcome of the subsequent
optimization. Given sufficient computational resources, one
merely needs to choose A “large enough”.

3.2. Reformulation of the system equations

Given a finite state space N4, we can collect py(z), n(z) and
§(2), with z € N4, in vectors py, p;,n € R?4*!1 and § €
{0, 1}24+1 with entries

[p)i = pr(i—A—1)
[n]; =n(i—A-1)
(8); = 8 — A~ 1)

where ¢ = 1,...,2A + 1. The transition probabilities are
accordingly collected in a matrix Q € R(ZA+D*(24+1) yith
entries

Qi =q(i—A—-1,j-A-1).

In matrix vector notation, (1) and (2) can now be written as

(1—1[6]:) - [Qrpylis 1> A+1
[prli = [Qrpr)i i=A+1 (5
[6]; + (1 —[8]:) - [Qupr)i» 1< A+1

and
[n]i = (1 —[d]:) - (1 +[Qnl:). (6)
In a more compact form, (5) and (6) become
P =140+ (1-0)© Qypy (72)
n=(1-48)®(1+Qn) (7b)

where © denotes element-wise multiplication,

I,=1el,...,ex,0,...,0] € {0,1}ATDx2A+D)

and e; denotes the ith canonical basis vector of the R2A+!,

The general procedure to reformulate bilinear integer
problems as MILP problems has recently been outlined in
[10]. Naturally, our approach does not essentially differ,
but exploits some characteristics of the problem at hand to
simplify the expressions. The reformulation is stated in the
following Lemma.

Lemma. Equations (5) and (6) can equivalently be formu-
lated as

(I = Qp)py| <0 (8a)
(I -Q)n—1| < Mé (8b)
TA0<p, <1—(I—1T441)0 (8¢)
0<n<M1-)9) (8d)

where M > 0 is a large, but otherwise arbitrary constant and
all inequalities have to be read element-wise.

Proof. A proof of the lemma can be given by inspection.
Setting [8]; = 0 in (8a) to (8d), yields

[Pili = [Qrpyli (9a)
[n]; =1+ [Qn]; (9b)
0<[py)i <1 (%0)
0<[n]; <M. (9d)

Since [py]; is a probability and M can be chosen arbitrarily
large, the inequalities in (9c) and (9d) are non-binding. The
equalities (9a) and (9b), on the other hand, correspond to (5)
and (6) evaluated at [8]; = 0.

In the case [d]; = 1, equations (8a) to (8d) become

IIpr — Qrpilil <1 (102)
[n—-Qnl; —1| <M (10b)
[p.)i =0, for 1>A+1 (10c)

[ppli =1, for i<A+1 (10d)

[n]; = 0. (10e)

Again, inequalities (10a) and (10b) are non-binding because
|[pr — Qips):| is the absolute difference of two probabilities
and M can be chosen arbitrarily large. Since the test stops
at state 4, if [8]; = 1, the equality constraints (10c) to (10e)
enforce [n]; = 0 and set [py]; to zero or one, depending on
the decision associated with the state i. Note that [6] 441 =
4(0) = 0 by definition. O
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3.3. Restating the sequential testing problem

We are now in a position to state the sequential detection
problems in Section 2 as mixed integer programs. Problem
(3) is equivalent to

min [n];, st 0, € {0,137 8" =[1 68 0 8] 17,

0
5lmpk

P € R2A+1, [Polic > 1=, [P1]i, <5,
and (8a) to (8d)

where k£ = 0, 1 and 7( denotes the initial state. Analogously,
Problem (4) can be stated as

min [pli, st 0, € {0,134 8T =[1 6} 0 67 1],
8%,Py

P € R2A+17 [pO]iO > 1- , [n]lo § v

and (8a) to (8d).
Some remarks are in order at this point:

e The mixed integer problem in fact optimizes over the
boundary conditions of a system of difference equations.
Only the on-off nature of the stopping rules allows us to
express them as a vector of binary variables.

e Such non-randomized discrete sequential tests can only re-
alize certain combinations of error probabilities and run
lengths. To meet the constraints exactly, randomized stop-
ping rules 6 € (0, 1) have to be used. Including the latter
in the optimization is not straightforward, since the bilin-
ear terms in the difference equations can no longer be han-
dled case by case. Unfortunately, bilinear programming is
even more computationally demanding than MILP and cur-
rently available algorithms are relatively inefficient. Fur-
ther progress in this area might change the picture, though.

e The free parameter M can be interpreted as an upper bound
on the worst-case average run length. Therefore, any large
integer is a valid choice. In contrast to A, which deter-
mines the size of the state space, M does not influence the
performance of the algorithm.

4. EXAMPLE

In order to illustrate the mixed integer approach to sequential
detection we present a simple example from the context of
distributed detection. Think of a remote sensor that makes
i.i.d. observations X1, Xo, ... and forwards them to a fusion
center, where a sequential test Ho : X, ~ N(0,1) vs. Hy :
X, ~ N (u, 1) is performed. The optimal test in this case is a
classical likelihood ratio test. In order to save bandwidth and
energy, however, the sensor might send binary decisions to the
fusion center instead of accurate observations or likelihood
ratios. In addition, the sensor could apply some censoring

rule [11] such that only a fraction ¢ < 1 of the decisions is
actually sent to the fusion center.

We assume the following situation: The supposedly rare
event 7 should be detected with high accuracy, say 5 =
103, whereas the more frequent event H; is allowed to be
misclassified more often, say o = 0.03. We want to design
a sequential test that works on the censored, binary decision
messages from the sensor and achieves at least the same «
as the optimal test. We further choose to minimize 5 under
the constraint that the expected number of transmissions un-
der H, is the same as for the optimal test. The optimization
problem is accordingly given by

opt

min p1(20) st po(z0) =1 —a, c-no(z0) <ny

where ng’ " denotes the average run length of the optimal test
under Hg. As a discrete test-statistic, we use the sum of the
binary messages, which we assume to be either 1 or —1, or
0 in the case of a censored transmission. The initial state is
zo = 0. We further choose ;# = 0.4 and a censoring region
symmetric around 0.54 such that ¢ = 0.5 under both H and
H1. Using Wald’s approximations for the design of the opti-
mal test, we get the thresholds Ty} &~ 3.51 and T}, ~ —6.88
and a lower bound on the average run length of ng” > 84.7.

To solve the mixed integer problem, we used Gurobi 5.5
[12] via the CVX [13] frontend and set M = 500, A = 30.
The result of the optimization are thresholds T,,, = 7 and
Tiow = —22, yielding a 0.0267 probability of first kind er-
rors and an average of 84.45 transmissions under Hy. The
probability of errors of the second kind, however, is reduced
by almost two orders of magnitude to p;(0) = 1.23 - 10~°.
Moreover, even though it has not been considered in the op-
timization, the expected number of transmissions under #
decreases from n{™ > 43.86 to c¢ny (0) = 27.91.

With this example, we want to emphasize two aspects of
discrete sequential tests and our proposed design algorithm.
First, it shows that under non-standard design objectives, dis-
crete tests can outperform their continuous counter parts, not
only in terms of energy and spectral efficiency, but also in
terms of test performance. Under the communication con-
straints considered here, even the very rough binary quantiza-
tion leads to a surprisingly good result. Second, the example
shows the flexibility that the mixed integer approach offers
the test designer by allowing a wide variety of objectives in
sequential testing to be handled within one consistent frame-
work.

5. CONCLUSIONS

We have presented a mixed integer programming approach to
the design of sequential tests and demonstrated its applicabil-
ity by means of an example. Based on this work, we strongly
advocate a closer connection between statistical test design
and optimization theory in future research.
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