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ABSTRACT

We show that the optimal design of non-randomized discrete

sequential tests, i.e., tests whose test statistics take on only a

countable number of states, can be modeled as a mixed integer

linear problem. This is done by reformulating the difference

equations describing the random walk on the integer lattice

in terms of linear mixed integer constraints. We outline the

general procedure and give a simple example to show how

the proposed method can be used in practice.

Index Terms— detection, mixed integer programming,

random walk, sequential analysis

1. INTRODUCTION

Due to its superior performance in time-critical environments,

sequential testing [1] has attracted increased attention in re-

cent years [2]. In many areas, sequential techniques have suc-

cessfully been applied to reduce delays and/or increase detec-

tion performance. Among the driving applications in signal

processing are spectrum sensing in cognitive radio [3, 4] and

distributed detection in sensor networks [5, 6]. On the theoret-

ical side, progress has been made in establishing performance

bounds and asymptotic optimality [7]. The design of strictly

optimal sequential tests, however, is still an open problem and

is rarely addressed in the literature.

In this paper, we present an approach to design optimal

discrete sequential tests using the framework of mixed integer

programming. The recent progress in this branch of optimiza-

tion theory resulted in a multitude of free and commercial

solvers that are able to deal with small to medium sized prob-

lems in a sufficiently efficient way. By embedding discrete

sequential testing in this rapidly evolving framework, we pro-

vide a generic design procedure that, for better or worse, does

not rely on specific characteristics of a particular application.

To the best of our knowledge, this is the first attempt to estab-

lish a connection between mixed integer programming and

sequential testing.

This work was supported by the LOEWE Priority Program Cocoon

(http://www.cocoon.tu-darmstadt.de) supported by the LOEWE research ini-

tiative of the state of Hesse/Germany.

We use the term discrete sequential tests to refer to tests

whose test statistic can only take on a countable number of

states such that every state can be mapped to an integer value.

Theoretically, this holds true for every digital implementa-

tion of a sequential test. Realistically, however, this work

targets scenarios where only a few bits are used for quantiza-

tion. In distributed sensor networks, for example, each sensor

might transmit a binary valued local decision to a fusion cen-

ter, which in turn performs a sequential test on these messages

– see the example in Section 4. In fact, there seems to be a

tendency in distributed detection to use rough quantizations

in order to reduce the communication load in large networks.

The widely predicted rise in the prevalence of such networks

emphasizes the need for efficient and powerful design algo-

rithms for discrete tests.

The paper is organized as follows. In Section 2, we

present the problem formulation and state the difference equa-

tions describing the general discrete sequential test. Based

on these equations, we derive a mixed integer programming

formulation of the test design problem in Section 3. The

procedure is illustrated with an example in Section 4.

A word on notation: Boldface lower case letters x denote

vectors and boldface upper case letters X matrices. The ith

entry of a vector is written as [x]i. The identity matrix is

denoted by I and the all-ones vector by 1. For the sake of a

more compact notation, the dimensions are not always stated

explicitly, but should be obvious from the context.

2. SYSTEM MODEL AND PROBLEM

FORMULATION

We consider a sequence of random variables (Xn)n≥1, de-

fined on some product probability space (Ω∞,A∞, P ). Our
aim is to perform a sequential statistical test between the two

simple hypotheses

H0 : P = P0 and H1 : P = P1.

The test is performed by observing a sequence of discrete test

statistic (Tn)n≥1, where each Tn : Ωn → Z maps the obser-

vations X1, . . . , Xn to an integer zn. Without loss of gener-

ality, we assume that positive integers are associated with a
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decision for H1 while negative integers are associated with a

decision for H0, meaning that if the test stops at a state Tn, it

decides for H1, if Tn > 0, and for H0, if Tn < 0. The state
Tn = 0 corresponds to events that do not allow any inference

about the true hypothesis.

In accordance with Wald’s sequential test [1], one can

think of Tn as a quantized log likelihood ratio. This, how-

ever, is by no means the only meaningful test statistic. To

interpret binary messages as quantized log likelihood ratios,

for example, is usually more misleading than helpful. IfΩ is a

finite set, one can even avoid the use of a statistic and simply

enumerate all possible outcomes directly. In order not to in-

troduce unnecessary conceptual limitations, we do not specify

the test statistic explicitly.

The more relevant question in sequential detection usu-

ally is not what test statistic to use, but when to stop the test.

In this work, we consider only non-randomized tests. This

means that at every state Tn the test either stops or continues

with probability one. The possibility to include randomized

stopping rules is briefly discussed in Section 3. The stopping

rule is in the following denoted by δ : Z → {0, 1}, where
δ(z) = 1 corresponds to stopping the test if the test statistic

equals z and δ(z) = 0 to continuing it.

Finally, we assume that the probability measures P0

and P1 can be specified via a set of transition probabilities

{qk(z, y) : z, y ∈ Z}, where k = 0, 1 and

qk(z, y) = Pk(Tn+1 = y |Tn = z) ∀n ≥ 0.

Note that the transition probabilities are assumed to be inde-

pendent of the time index n. This implies stationarity, but not

necessarily independence of the sequence (Xn)n≥1.

To describe the dynamic behavior of the test, we intro-

duce the quantities pk(z), which denote the probability under
Pk that the test ends with a decision forH0, given that the cur-

rent test statistic equals z. Due to the stationarity assumption,

these probabilities are time invariant and related via

pk(z) =































(1− δ(z))
∑

y∈Z

qk(z, y)pk(y), z > 0

∑

y∈Z

qk(z, y)pk(y), z = 0

δ(z) + (1− δ(z))
∑

y∈Z

qk(z, y)pk(y), z < 0.

(1)

Equation (1) is the well-known difference equation describ-

ing the dynamics of a generalized random walk on the integer

lattice [8]. The role of the stopping rule δ(z) in (1) is to de-

clare terminal states. If δ(z) = 1, the state z terminates the

random walk, otherwise it continues, according to the transi-

tion probabilities. Note that we do not allow the test to stop

if there is no preference for either hypothesis, i.e., δ(0) = 0.
The error probabilities of the first and second kind are given

by 1−p0(z0) and p1(z0), respectively, where z0 = T0 denotes

the initial state of the test.

In a similar way, the expected run length n(z) of a test

starting at state z is governed by the difference equation

n(z) = (1− δ(z))



1 +
∑

y∈Z

q(z, y)n(y)



 . (2)

Again, δ(z) determines whether the test stops immediately,

resulting in an average run length of zero, or makes a tran-

sition to some state y with corresponding average run length

n(y). Note that in (2), we leave the probability measure

underlying the test unspecified. Common choices are P0 or

P1 to consider the run length under each hypothesis. In a

Bayesian framework, one would choose the sum measure

π0P0 + (1− π0)P1, π0 ∈ (0, 1). In general, any measure that

can be represented by time-invariant transition probabilities

can be considered.

The difference equations (1) and (2) sufficiently describe

the sequential test in terms of its run length and error probabil-

ities. They provide the basis for the mixed integer formulation

given in the next section. In particular, we present solutions

to the classic sequential detection problem

min
δ

n(z0) s.t. p0(z0) ≥ 1− α, p1(z0) ≤ β (3)

and the sequential equivalent to the Neyman-Pearson test

min
δ

p1(z0) s.t. p0(z0) ≥ 1− α, n(z0) ≤ γ (4)

where α, β ∈ (0, 1) and γ > 0. The solution of (3) and

(4) is an optimal stopping rule δ∗ or, equivalently, an optimal

stopping region S∗ of the form

S∗ = {z ∈ Z : δ∗(z) = 1}.

At every time instant n, the optimal test continues, if Tn ∈
S∗ = Z \ S∗, and stops if Tn ∈ S∗.

So far we have implicitly assumed that the optimal test

stops with probability one, i.e., eventually hits the stopping

region. Tests for which this assumption does not hold exist,

but are rather pathological and require an entirely different

problem formulation, since their average run length is infinite.

We therefore exclude them from our treatment.

3. SEQUENTIAL DETECTION AS A MIXED

INTEGER PROBLEM

The mixed integer structure of the sequential test is obvious

from (1) and (2), where δ and pk are the unknown quanti-

ties. However, the bilinear terms on the right-hand side cause

problems in the sense that they are hard to tackle numerically

and are not supported by standard solvers. In this section, we

restate the equations in a form that can be solved readily via

mixed integer linear programming (MILP).

3480



3.1. Reduction to a finite-dimensional state space

Before applying any numerical optimization technique to the

sequential detection problem, we have to restrict its state

space to a set of finite cardinality. This means that we have to

determine some N ⊂ Z, with |N | < ∞, for which we leave

the stopping rule undetermined. For all z ∈ Z \ N , however,

the stopping rule has to be chosen in advance. In other words,

a subset S̃ ⊂ S∗ of the optimal stopping region has to be

known a priori.

Without loss of generality, we assume the initial estimate

of the stopping region to be of the form

δ(z) = 1, for |z| ≥ A

where A is a positive integer. Since this renders all states

|z| ≥ A equivalent to the states A or −A, it allows us to

consider only the finite number of states z ∈ NA = {z ∈ Z :
|z| ≤ A}. The transition probabilities have to be adjusted

accordingly to

q̃k(z, y) = qk(z, y), |y| < A

q̃k(z,±A) =

∞
∑

l=A

qk(z,±l).

ChoosingAmay appear critical at first glance, but usually

does not pose a major problem. In the case of a quantized

probability ratio test, for example, any upper bound on the

absolute value of the optimal thresholds can be used. Such

bounds can be obtained from Wald’s approximations [1] and

similar results [9]. In cases where bounds are not available,

one might even work with just an initial guess, which can

then be altered, depending on the outcome of the subsequent

optimization. Given sufficient computational resources, one

merely needs to choose A “large enough”.

3.2. Reformulation of the system equations

Given a finite state space NA, we can collect pk(z), n(z) and
δ(z), with z ∈ NA, in vectors p0,p1,n ∈ R

2A+1 and δ ∈
{0, 1}2A+1 with entries

[pk]i = pk(i−A− 1)

[n]i = n(i−A− 1)

[δ]i = δ(i−A− 1)

where i = 1, . . . , 2A + 1. The transition probabilities are

accordingly collected in a matrix Q ∈ R
(2A+1)×(2A+1) with

entries

[Q]ij = q̃(i−A− 1, j −A− 1).

In matrix vector notation, (1) and (2) can now be written as

[pk]i =











(1− [δ]i) · [Qkpk]i, i > A+ 1

[Qkpk]i, i = A+ 1

[δ]i + (1− [δ]i) · [Qkpk]i, i < A+ 1

(5)

and

[n]i = (1− [δ]i) · (1 + [Qn]i) . (6)

In a more compact form, (5) and (6) become

pk = IAδ + (1− δ)⊙Qkpk (7a)

n = (1− δ)⊙ (1+Qn) (7b)

where ⊙ denotes element-wise multiplication,

IA = [e1, . . . , eA,0, . . . ,0] ∈ {0, 1}(2A+1)×(2A+1)

and ei denotes the ith canonical basis vector of the R
2A+1.

The general procedure to reformulate bilinear integer

problems as MILP problems has recently been outlined in

[10]. Naturally, our approach does not essentially differ,

but exploits some characteristics of the problem at hand to

simplify the expressions. The reformulation is stated in the

following Lemma.

Lemma. Equations (5) and (6) can equivalently be formu-

lated as

|(I −Qk)pk| ≤ δ (8a)

|(I −Q)n− 1| ≤ Mδ (8b)

IAδ ≤ pk ≤ 1− (I − IA+1)δ (8c)

0 ≤ n ≤ M(1− δ) (8d)

whereM ≫ 0 is a large, but otherwise arbitrary constant and
all inequalities have to be read element-wise.

Proof. A proof of the lemma can be given by inspection.

Setting [δ]i = 0 in (8a) to (8d), yields

[pk]i = [Qkpk]i (9a)

[n]i = 1 + [Qn]i (9b)

0 ≤ [pk]i ≤ 1 (9c)

0 ≤ [n]i ≤ M. (9d)

Since [pk]i is a probability and M can be chosen arbitrarily

large, the inequalities in (9c) and (9d) are non-binding. The

equalities (9a) and (9b), on the other hand, correspond to (5)

and (6) evaluated at [δ]i = 0.
In the case [δ]i = 1, equations (8a) to (8d) become

|[pk −Qkpk]i| ≤ 1 (10a)

|[n−Qn]i − 1| ≤ M (10b)

[pk]i = 0, for i > A+ 1 (10c)

[pk]i = 1, for i < A+ 1 (10d)

[n]i = 0. (10e)

Again, inequalities (10a) and (10b) are non-binding because

|[pk −Qkpk]i| is the absolute difference of two probabilities
and M can be chosen arbitrarily large. Since the test stops

at state i, if [δ]i = 1, the equality constraints (10c) to (10e)

enforce [n]i = 0 and set [pk]i to zero or one, depending on

the decision associated with the state i. Note that [δ]A+1 =
δ(0) = 0 by definition.
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3.3. Restating the sequential testing problem

We are now in a position to state the sequential detection

problems in Section 2 as mixed integer programs. Problem

(3) is equivalent to

min
δk,pk

[n]i0 s.t. δk ∈ {0, 1}A−1, δT = [ 1 δT0 0 δT1 1 ],

pk ∈ R
2A+1, [p0]i0 ≥ 1− α, [p1]i0 ≤ β,

and (8a) to (8d)

where k = 0, 1 and i0 denotes the initial state. Analogously,

Problem (4) can be stated as

min
δk,pk

[p1]i0 s.t. δk ∈ {0, 1}A−1, δT = [ 1 δT0 0 δT1 1 ],

pk ∈ R
2A+1, [p0]i0 ≥ 1− α, [n]i0 ≤ γ,

and (8a) to (8d).

Some remarks are in order at this point:

• The mixed integer problem in fact optimizes over the

boundary conditions of a system of difference equations.

Only the on-off nature of the stopping rules allows us to

express them as a vector of binary variables.

• Such non-randomized discrete sequential tests can only re-

alize certain combinations of error probabilities and run

lengths. To meet the constraints exactly, randomized stop-

ping rules δ ∈ (0, 1) have to be used. Including the latter

in the optimization is not straightforward, since the bilin-

ear terms in the difference equations can no longer be han-

dled case by case. Unfortunately, bilinear programming is

even more computationally demanding than MILP and cur-

rently available algorithms are relatively inefficient. Fur-

ther progress in this area might change the picture, though.

• The free parameterM can be interpreted as an upper bound

on the worst-case average run length. Therefore, any large

integer is a valid choice. In contrast to A, which deter-

mines the size of the state space, M does not influence the

performance of the algorithm.

4. EXAMPLE

In order to illustrate the mixed integer approach to sequential

detection we present a simple example from the context of

distributed detection. Think of a remote sensor that makes

i.i.d. observations X1, X2, . . . and forwards them to a fusion

center, where a sequential test H0 : Xn ∼ N (0, 1) vs. H1 :
Xn ∼ N (µ, 1) is performed. The optimal test in this case is a

classical likelihood ratio test. In order to save bandwidth and

energy, however, the sensor might send binary decisions to the

fusion center instead of accurate observations or likelihood

ratios. In addition, the sensor could apply some censoring

rule [11] such that only a fraction c < 1 of the decisions is

actually sent to the fusion center.

We assume the following situation: The supposedly rare

event H1 should be detected with high accuracy, say β =
10−3, whereas the more frequent event H0 is allowed to be

misclassified more often, say α = 0.03. We want to design

a sequential test that works on the censored, binary decision

messages from the sensor and achieves at least the same α

as the optimal test. We further choose to minimize β under

the constraint that the expected number of transmissions un-

der H0 is the same as for the optimal test. The optimization

problem is accordingly given by

min
δ

p1(z0) s.t. p0(z0) ≥ 1− α, c · n0(z0) ≤ n
opt
0

where n
opt
0 denotes the average run length of the optimal test

under H0. As a discrete test-statistic, we use the sum of the

binary messages, which we assume to be either 1 or −1, or
0 in the case of a censored transmission. The initial state is

z0 = 0. We further choose µ = 0.4 and a censoring region

symmetric around 0.5µ such that c = 0.5 under both H0 and

H1. Using Wald’s approximations for the design of the opti-

mal test, we get the thresholds T
opt
up ≈ 3.51 and T opt

low ≈ −6.88

and a lower bound on the average run length of n
opt
0 > 84.7.

To solve the mixed integer problem, we used Gurobi 5.5

[12] via the CVX [13] frontend and set M = 500, A = 30.
The result of the optimization are thresholds Tup = 7 and

Tlow = −22, yielding a 0.0267 probability of first kind er-

rors and an average of 84.45 transmissions under H0. The

probability of errors of the second kind, however, is reduced

by almost two orders of magnitude to p1(0) = 1.23 · 10−5.

Moreover, even though it has not been considered in the op-

timization, the expected number of transmissions under H1

decreases from n
opt
1 > 43.86 to c n1(0) = 27.91.

With this example, we want to emphasize two aspects of

discrete sequential tests and our proposed design algorithm.

First, it shows that under non-standard design objectives, dis-

crete tests can outperform their continuous counter parts, not

only in terms of energy and spectral efficiency, but also in

terms of test performance. Under the communication con-

straints considered here, even the very rough binary quantiza-

tion leads to a surprisingly good result. Second, the example

shows the flexibility that the mixed integer approach offers

the test designer by allowing a wide variety of objectives in

sequential testing to be handled within one consistent frame-

work.

5. CONCLUSIONS

We have presented a mixed integer programming approach to

the design of sequential tests and demonstrated its applicabil-

ity by means of an example. Based on this work, we strongly

advocate a closer connection between statistical test design

and optimization theory in future research.
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