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ABSTRACT

A method to detect and isolate power system transmission
line outages in near real-time is proposed. In particular, a
linearized power system model is presented and a statistical
model for line outage detection and isolation is developed us-
ing this model. To detect and isolate the line outage quickly,
algorithms based on statistical quickest change detection are
employed.

Index Terms— Power systems, line outage detection and
identification, quickest change detection, CuSum.

1. INTRODUCTION

Existing tools for online power system operational reliabil-
ity monitoring rely on a system model obtained offline, con-
structed from the transmission network, line parameters, and
historical and forecasted power generation and demand [1, 2].
These online analyses generally include repeated computa-
tions of power flow solutions using a full nonlinear model
or a linearized model. Thus, the validity of the study results
rely on the accuracy of the system model used (including up-
to-date network topology and parameters), which is heavily
dependent on accurate records and telemetry data. Such de-
ficiencies in situational awareness, including knowledge of
transmission line statuses, have contributed to numerous ma-
jor North American blackouts [1, 2]. For example, in the 2011
San Diego blackout, operators could not detect that certain
lines were overloaded or close to being overloaded because
the network model was not up-to-date [2]. Thus, there ex-
ists an impetus to develop efficient and robust online tools to
detect and identify topology changes. With respect to this,
phasor measurement units (PMUs) are an enabling technol-
ogy for timely identification of transmission line outages and,
in general, changes in network topology [3, 4, 5].

In this paper, we propose an approach based on the theory
of quickest change detection (QCD) for line outage detection
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and identification. In QCD, a decision maker observes a se-
quence of random variables, the distribution of which changes
abruptly due to some event. The objective is to detect this
change in distribution as quickly as possible subject to a con-
straint on the false alarm rate; see [6] for a survey. We model
the incremental change in voltage angle and power injection
measurements obtained from PMUs as random variables. A
line outage changes the probability distribution of the incre-
mental change in voltage angle measurements. By processing
this data sequentially, we employ a QCD algorithm to detect
this change in distribution. The algorithm can also be used to
identify the location of the fault. To the best of our knowl-
edge, the problem of line outage detection and identification
has not been studied in the framework of QCD previously.

Existing approaches to line outage detection and/or iden-
tification consider the phase difference between two sets of
PMU voltage measurements obtained pre- and post-event,
and proceed via hypothesis testing [3], sparse vector estima-
tion [4], or mixed-integer nonlinear optimization [5]. These
papers either assume that the line outage instance is known
(in which case the objective is isolation of the line outage),
or propose a detection technique that does not exploit the
fact that the line outage is persistent. In a quickest change
detection algorithm, the fact that the fault persists after it has
occurred is exploited to detect the outage more efficiently.

2. POWER SYSTEM MODEL
In this section, we describe the linearized power system
model and the PMU sampling process adopted in this work,
before and after a line outage. We also obtain statistical mod-
els that describe PMU measurements obtained before and
after a line outage.

2.1. Linearization of the Power Flow Model
We consider a power system network represented by a graph,
with N nodes denoted by V = {1, . . . , N}, each one cor-
responding to a bus. The set of edges in the graph, denoted
by E , represent the grid of transmission lines in the power
system, i.e., for n,m ∈ V , (n,m) ∈ E if there exists a trans-
mission line between buses n and m. We use |E| to denote
the number of edges or transmission lines in the graph. At
time instant k, let Vn[k] and θn[k], respectively, denote the
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Fig. 1. Network topology for 3-bus system.

voltage magnitude and angle at bus n; additionally, Pn[k] and
Qn[k], respectively, denote the net active and reactive power
injection (generator or load) at bus n. Then, with1 θ[k] =
[θ1[k], . . . , θN [k]]T , V [k] = [V1[k], . . . , VN [k]]T , P [k] =
[P1[k], . . . , PN [k]]T , and Q[k] = [Q1[k], . . . , QN [k]]T , the
static behavior of a power system can be described by the
power flow equations, which can be compactly written as real
power and reactive power balance components as

P [k] = fP (θ[k], V [k]),

Q[k] = fQ(θ[k], V [k]),
(1)

where the dependence on network parameters, such as line
series and shunt impedances, is implicitly considered in the
functions fP (·) and fQ(·).

Suppose, a solution exists at (θ[k], V [k], P [k], Q[k]), i.e.,
P [k] = fP (θ[k], V [k]) and Q[k] = fQ(θ[k], V [k]), and as-
sume fP (·) and fQ(·) are continuously differentiable with
respect to θ and V at (θ[k], V [k], P [k], Q[k]). Define small
variations in voltage magnitudes and angles between time in-
stants k and k+ 1 as ∆V [k] = V [k+ 1]−V [k] and ∆θ[k] =
θ[k+1]−θ[k], respectively. Similarly, small variations in the
active and reactive power injections are defined as ∆P [k] =
P [k+ 1]−P [k] and ∆Q[k] = Q[k+ 1]−Q[k], respectively.
Then, assuming that ∆P [k], ∆Q[k], ∆θ[k], and ∆V [k] are
sufficiently small, we can approximate (1) with a first-order
Taylor series expansion as[

P [k] + ∆P [k]
Q[k] + ∆Q[k]

]
≈
[
fP (θ[k], V [k])
fQ(θ[k], V [k])

]
+ J [k]

[
∆θ[k]
∆V [k]

]
,

where

J [k] =

[
H[k] N [k]
K[k] L[k]

]
=

[ ∂fP
∂θ

∂fP
∂V

∂fQ
∂θ

∂fQ
∂V

]
(θ[k],V [k])

.

Since P [k] = fP (θ[k], V [k]) and Q[k] = fQ(θ[k], V [k]), we
have [

∆P [k]
∆Q[k]

]
≈
[
H[k] N [k]
K[k] L[k]

] [
∆θ[k]
∆V [k]

]
. (2)

A standard assumption used in transmission systems anal-
ysis is that the entries of H and L in (2) are much larger

1[·]T denotes the matrix transpose operation

Table 1. Parameter values for 3-bus system shown in Fig. 1.
P2 P3 X1,2 X2,3 X1,3

-1 -0.9 0.0504 0.0372 0.0636

than those of N and K [7]. This effectively decouples (2)
so that variations in active power injections primarily affect
bus voltage angles, while variations in reactive power injec-
tions mainly affect bus voltage magnitudes. In this paper,
we assume the decoupling assumptions holds and only con-
sider ∆P [k] ≈ H[k]∆θ[k]. Further, under the assumptions
used to devise the so-called DC model (the system is lossless,
Vn[k] = 1 per unit (p.u.) for all n, k, and θn[k] − θm[k] ≈ 0
for all k and for n,m ∈ V), the matrix H[k] becomes simply
the negative of the imaginary part of the network admittance
matrix constructed while neglecting transmission line resis-
tances [7]. Under these assumptions, then, H[k] becomes in-
dependent of the operating point, i.e., H[k] = H , for all k.
And we obtain

∆P [k] ≈ H∆θ[k]. (3)

The matrix H has the same structure as the graph Laplacian
for the graph representation underlying the power network. In
this way, the network topology is encoded into H .
Example 1 (3-Bus System) In this example, we illustrate the
power system modeling concepts above with the lossless sys-
tem shown in Fig. 1, where bus 1 is the so-called slack bus,
i.e., V1∠θ1 = 1∠0◦ p.u. In Fig. 1,Xn,m is the imaginary part
of the impedance of the line connecting buses n and m. The
parameter values are listed in Table 1 and, unless otherwise
stated, all quantities are in per unit. For ease of notation, we
suppress the dependence on time instant k. Then, the nonlin-
ear real power balance equations are

P1 =
V1V2
X1,2

sin(θ1 − θ2) +
V1V3
X1,3

sin(θ1 − θ3),

P2 =
V2V1
X1,2

sin(θ2 − θ1) +
V2V3
X2,3

sin(θ2 − θ3),

P3 =
V3V1
X1,3

sin(θ3 − θ1) +
V3V2
X2,3

sin(θ3 − θ2).

(4)

Since bus 1 is the reference bus with θ1 = 0, we remove the
first equation from (4); and under the DC assumptions, the
model in (4) becomes

P2 =
1

X1,2
θ2 +

1

X2,3
(θ2 − θ3),

P3 =
1

X1,3
θ3 +

1

X2,3
(θ3 − θ2).

(5)

We differentiate (5) with respect to θ = [θ2, θ3]T to get a
small-signal linear model of the form in (3), i.e., ∆P [k] =
H∆θ[k], where

H =

[
1

X1,2
+ 1

X2,3
− 1
X2,3

− 1
X2,3

1
X1,3

+ 1
X2,3

]
. (6)

�
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Suppose, at k = γ, a line outage occurs for the line con-
necting buses n and m, denoted by (n,m) ∈ E . Then, for
k ≥ γ, the matrix H in (3) changes to a new matrix H̃n,m.
Without loss of generality, we can write the post-change ma-
trix H̃n,m as the sum of the pre-change matrix H and some
perturbation matrix ∆Hn,m, i.e., H̃n,m = H+∆Hn,m. Then
we get the following post-change equation:

∆P [k] ≈ H̃n,m∆θ[k] = (H + ∆Hn,m)∆θ[k]. (7)

Since H has the same structure as the graph Laplacian of
the network, we conclude that the only non-zero terms in
the matrix ∆Hn,m are ∆Hn,m[n, n] = −∆Hn,m[m,n] =
∆Hn,m[m,m] = −∆Hn,m[n,m] = −1/Xn,m, where
Xn,m is the imaginary part of the impedance of the out-
aged line. Thus, the matrix ∆Hn,m is a rank-one matrix and
can be written as

∆Hn,m = − 1

Xn,m
hn,mh

T
n,m, (8)

where hn,m is a vector with the nth entry equal to 1, mth

entry equal to -1, and all other entries equal to 0.

2.2. Statistical Model
We now obtain a statistical model for the measurements
{∆θ[k]}k≥1. Small variations in measurements of real power
injection, ∆P [k], can be attributed to (i) random fluctuations
in electricity consumption by end users, and (ii) random noise
in communication channels between PMUs and the control
center. Hence, we model ∆P [k]’s as independent and iden-
tically distributed (i.i.d.) with a jointly Gaussian probability
density function (p.d.f.), i.e., ∆P [k] ∼ N (0,Σ). Further, we
assume the measured ∆Pn[k] is independent from all other
∆Pm[k],m 6= n. Thus, the matrix Σ contains nonzero entries
only on its diagonal. Since the statistics of ∆P [k] are known,
we consider ∆P [k] as the input to the system described in (3)
with ∆θ[k] as the observation and rewrite (3) as

∆θ[k] ≈M∆P [k], k < γ, (9)

where M = H−1 and γ is the line outage instance. Thus,

∆θ[k] ∼ N (0,MΣMT ) for k < γ. (10)

For k > γ, the post-change system described in (7) can
be rewritten as

∆θ[k] ≈ M̃n,m∆P [k], k > γ, (11)

where, M̃n,m = M + ∆Mn,m. Thus, when the fault is at line
(n,m),

∆θ[k] ∼ N (0, M̃n,mΣM̃T
n,m) for k > γ, (12)

In this paper we ignore the effect of the sample at k = γ and
only aim to detect the change that is persistent. Using the
matrix inversion lemma, we obtain

∆Mn,m = βn,m gn,m gTn,m,

where βn,m = 1/(Xn,m − hTn,mH
−1hn,m) and gn,m =

H−1hn,m.

Example 2 (3-Bus System) In this example, we begin with
the 3-bus system from Example 1 and consider the outage of
the line (2, 3). In this case, H̃2,3 = H + ∆H2,3, where

∆H2,3 = − 1

X2,3

[
1 −1
−1 1

]
= − 1

X2,3

[
1
−1

] [
1 −1

]
,

a rank-one matrix. Then M̃2,3 = H̃−12,3 = (H + ∆H2,3)−1.
Using the matrix inversion lemma, we compute M̃2,3 =
H−1 + β2,3 g2,3 g

T
2,3, where

β2,3 =
1

X2,3 − hT2,3H−1h2,3
, g2,3 = H−1

[
1
−1

]
,

with H given in (6). �

3. QUICKEST CHANGE DETECTION ALGORITHM
The analysis and arguments provided in the previous section
allow us to reduce the problem of line outage detection to the
problem of detecting a change in the probability distribution
of the sequence of random vectors {∆θ[k]}k≥1. We would
like to detect this change in distribution as quickly as possible
while avoiding false alarms. This is a well studied problem in
statistics and is called the problem of quickest change detec-
tion. Next, we provide a precise mathematical description of
this problem and the QCD algorithm that we will use to detect
a line outage. We refer the readers to [6] for a detailed survey
on QCD theory and algorithms.

3.1. Quickest Change Detection Problem Formulation
We assume that the sequence {∆θ[k]}k≥1 of random vectors
is being observed by a central controller or a decision maker.
At some random time γ, γ ≥ 1, there is a line outage, and
the p.d.f. of the sequence {∆θ[k]} changes from f0 to f1.
The objective is to find a stopping time τ for the sequence
{∆θ[k]} to detect this f0 to f1 transition as quickly as possi-
ble. In the absence of a change we would like to keep E[τ ]
as large as possible (avoid false alarms). Once the change
occurs, we would like to have E[τ ] as small as possible. A
popular formulation in the literature that captures the above
trade-off is due to Pollak [8]:

min
τ

sup
γ≥1

Eγ [τ − γ|τ ≥ γ]

subject to E∞[τ ] ≥ β,
(13)

where Eγ denotes the expectation with respect to probability
measure when change occurs at point γ, E∞ denotes the cor-
responding expectation when the change never occurs, and
β > 0 is the given constraint on the mean time to false alarm.

3.2. Algorithm for Solving the QCD Problem
When both the pre- and post-change p.d.fs f0 and f1 are
known, a popular algorithm in the literature that enjoys some
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optimality properties with respect to Pollak’s formulation is
the Cumulative Sum (CuSum) algorithm [9]. The algorithm
is described next. First, compute a sequence of statistics
recursively so that for k ≥ 0,

Wk+1 =

(
Wk + log

f1(∆θ[k + 1])

f0(∆θ[k + 1])

)+

, W0 = 0, (14)

where (x)+ = x if x ≥ 0, otherwise (x)+ = 0. Next, declare
a change the first time this statistic is above a pre-designed
threshold A:

τC = inf{k ≥ 1 : Wk > A}. (15)

Prior to change, E[log(f1(∆θ)/f0(∆θ))] < 0, and the statis-
tics Wk remain close to zero. The threshold A can be chosen
to control the mean time to false alarm. After the change,
E[log(f1(∆θ)/f0(∆θ))] > 0, and the statistic Wk ↑ ∞.
Thus, if E[log(f1(∆θ)/f0(∆θ))] is large, the change is de-
tected quickly after it occurs.

In the line outage problem we consider in this paper the
line outage can occur in more than one way. Mathematically,
for the application in hand, the post-change p.d.f. f1 is un-
known. However, since the single line outage can occur in,
at most, |E| ways, the post-change distribution is known to
belong to a finite set, i.e.,

f1 ∈ {fn,m1 , (n,m) ∈ E}.

Specifically,

∆θ[k] ∼ f0 = N (0,MΣMT ) for k < γ, (16)

and

∆θ[k] ∼ fn,m1 = N (0,Mn,mΣMT
n,m) for k ≥ γ. (17)

See Section 2.2 for expressions for M and Mn,m.
A standard way to solve this problem is to apply the gen-

eralized likelihood ratio test approach. That is to compute
|E| CuSum statistics in parallel, one for each post-change sce-
nario, and stop the first time a change is detected in any one of
the CuSums. Mathematically, compute, for each (n,m) ∈ E ,

Wn,m
k+1 =

(
Wn,m
k + log

fn,m1 (∆θ[k + 1])

f0(∆θ[k + 1])

)+

, (18)

with Wn,m
0 = 0, and stop at

τmax = inf

{
k ≥ 1 : max

(n,m)∈E
Wn,m
k > A

}
. (19)

See [10] for a detailed performance analysis of this algorithm.
We use this algorithm or the stopping time τmax to detect a line
outage in the power system.

This same algorithm can also be used for line outage iden-
tification as well. Let L̂ denote the estimate for the line expe-
riencing a fault. Then we set

L̂ = arg max (n,m)∈E Wn,m
τmax

. (20)

Fig. 2. Average detection delay vs logarithm of mean time to
false alarm for the 3-bus system.

It can be shown that

sup
γ≥1

Eγ [τmax − γ|τmax ≥ γ] = E1[τmax − 1], (21)

that is the supremum in (13) is achieved at γ = 1 [6]. This is
useful from the view point of simulating the test.

4. NUMERICAL RESULTS AND DISCUSSION

We now apply the algorithm τmax to detect a line outage in
our running example of the three bus system. Due to the gen-
erality the QCD algorithm in (19), we can use it to detect
line outages in more complex power systems as well. In our
case study, Σ ∈ R2×2, and Σ[1, 1] = Σ[2, 2] = 0.5 while
Σ[1, 2] = Σ[2, 1] = 0.

We simulate the performance of τmax when applied to
{∆θ[k]} generated from the full nonlinear system. We
choose γ = 1 as the time at which the line outage occurs
as this is the worst possible value of γ; see (21). In Fig. 2,
we plot E1[τmax − 1] against log E∞[τmax], for three different
post-change scenarios. The threshold A for τmax is chosen
to satisfy mean time to false alarms of 1 hour, half a day,
1 day, 2 days, and 1 week. At 30 samples/sec (typical of
PMU measurement sampling rate [11]), this corresponds to
log E∞[τmax] values of 11.58, 14.07, 14.76, 15.4, and 16.7,
respectively. To choose the threshold A for such large values
of mean time to false alarm, we observed that log E∞[τmax] is
approximately linear in the threshold A. We make use of this
fact to simulate the performance of τmax for small values of A
and then use linear regression to obtain an estimate of A that
can achieve the given values of log E∞[τmax].

As shown in Fig. 2, even for such high yet reasonable
values of the mean time to false alarm, the detection delay
is quite small. In fact, at the rate of 30 samples/sec, the delays
correspond to real time detection delay of less than one third
of a second. Although one may not get such a performance for
large systems, one can certainly expect to get a good trade-off.
Furthermore, due to the optimality property associated with
such a QCD procedure, this is the best one can hope to achieve
in principle. We also used (20) to isolate the faulty line for
the 3-bus example. We obtained a perfect fault isolation.
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