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ABSTRACT

The goal of this study is to find evidence of cyclicity or peri-
odicity in data with low computational complexity and high
accuracy. Using delay embeddings, we transform the time-
domain signal into a point cloud, whose topology reflects
the periodic behavior of the signal. Persistent homology is
employed to determine the underlying manifold of the point
cloud, and the Euler characteristic provides for a fast com-
putation of topology of the resulting manifold. We apply the
introduced approach to breathing sound signals for wheeze
detection. Our experiments substantiate the capabilities of the
proposed method.

Index Terms— Topological signal analysis, periodicity
detection, biomedical signal processing, graph analysis

1. INTRODUCTION

A time series is a collection of data values measured com-
monly at consecutive uniform intervals of time to reflect par-
ticular behavior of a quantity. Detecting periodic patterns in
time series can disclose significant information about the be-
havior and the future trends of the represented entity. The key
objective of periodicity detection is finding temporal regular-
ities within the time series to identify whether a complete or
almost recurrent structure exists. The problem of discover-
ing potential periods in time series data is an important topic
in several audio and image processing applications including
speech processing [1], image compression artifacts [2] and
patterned texture analysis [3]. Moreover, periodicity detec-
tion has been a dynamic area of research in biomedical ap-
plications such as DNA and protein sequences and gene reg-
ulations [4], [5], [6]. We will demonstrate this application
through wheeze detection due to the presence of harmonic
content in this type of abnormal breath sounds.

Wheezes are continuous adventitious lung sounds ex-
tensively used as an indicator of airway obstruction. The
most important characteristic of wheeze signals, which is
the key component of this study, is their harmonic behav-
ior. Wheeze detection problem is studied using wavelet and
time-frequency techniques in [7], [8] and [9]. We will apply
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our proposed approach for periodicity detection in wheeze
signals for the faster and more accurate performance.

Analysis of data by evaluation of its large scale structure
is growing in popularity in the name of topological data anal-
ysis [10]. A point cloud includes a large but finite set of points
sampled from a primary form. We propose to use time-delay
coordinate embedding as a tool to construct a point cloud
from a time series. Takens [11] has proved an important theo-
rem which states that almost every time-delay embedding of a
time series can recover the underlying dynamics of a system.
We can detect the presence of harmonic structures in the data
by exploiting topological tools for the analysis of the delay
embedding point clouds. Persistent homology is used in [12]
to detect topological holes in the delay embedding point cloud
occurring on account of the periodic structure of the data. In
this paper, we exploit density based subsampling to improve
the performance and reduce the number of representative data
points. Moreover, Euler characteristics and Delaunay trian-
gulation are utilized to reduce the computational complexity
of the algorithm to O(nlogn). Since we describe the global
topological structure of the point cloud rather than their local
geometric behavior, our approach is robust to missing data
points.

The remainder of the paper is organized as follows: the
problem modeling and formulation is presented in Section 2.
The proposed framework, experimental results and compari-
son to other methods are included in Section 3. Finally Sec-
tion 4 concludes the paper.

2. PROBLEM FORMULATION

The proposed signal model is a piecewise sinusoidal function
with different periods and phase with a time varying envelope
defined as

w(t) =

n∑
i=1

gi(t), (1)

where

gi(t) =

{
wi(t) ti−1 ≤ t < ti,
0 otherwise (2)

and w′is, i = 1, 2, ..., n are defined as,

wi(t) = Ai sin

(
2π

Ti
t+ φi

)
, Ai 6= 0. (3)
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Fig. 1: (a) A short segment of a wheeze signal showing the
phase reversal problem (b) its delay embedding

with φi+1 = φi + 2πti

(
1
Ti
− 1

Ti+1

)
. For each time series

{wi}, i = 1, 2, ..., n, a two dimensional delay coordinate em-
bedding can be described as the following vector quantity:

W (t) = (w(t), w(t+ τ)), (4)

where w(t) ∈ R and τ is the time delay [11]. It is proved
in [12] that the delay-coordinate embedding W (t) is a set of
concentric ellipses with angles of rotation ±π/4, with vary-
ing radii and side lengths of the circumscribed squares around
them. It is also shown that W (t) obtained using the appropri-
ate delay always has a topological hole. It also includes a
small finite set of points whose coordinates come from dif-
ferent W ′is. In fact, these points are created by the transition
between neighboring W ′is and are therefore generally close
to them. However, since we use a fixed value of delay for dif-
ferent phases, W (t) would include ellipses with both angles
of rotations ±π/4. Transitioning from one ellipse to another
one with different angle of rotation in W (t) happens when a
phase reversal takes place inw(t) in time domain. Figure 1(a)
illustrates a phase reversal towards the end of a small section
of a wheeze signal. The corresponding delay embedding as
shown in Figure 1(b), includes two sets of ellipses with an-
gles of rotation±π/4 and the transition points between them.
When phase reversal occurs in small amplitudes, the transi-
tion points might lie inside the hole, thus “covering” it. The
number of these points and their density are very small com-
pared to the total number of points in wheeze signals. This
problem is resolved by a subsampling based on the estimated
density of the points in section 3.1.

3. PROPOSED FRAMEWORK

3.1. Density Based Point Cloud Subsampling

It is usually the case, as also demonstrated by our experi-
ments, that a very small subset (appropriately sub-sampled) of
the data points called landmarks [13] preserves the topology
of the data set, thus greatly reducing the computational com-
plexity. The fastest method is random landmark selection that
selects the landmarks randomly without replacement. Here,
we start with a point cloud X, and choose a smaller set of
points L ⊂ X using this technique. We then apply a den-
sity based subsampling to L as described below to eliminate

the low density points near the origin caused by phase rever-
sals and improve the performance of the periodicity detection
algorithm. A codensity function used in [14] represents the
‘nearest neighbor’ estimation of the density of the space at
each point locally. For each point x in the point cloud X and
a fixed positive integer k > 0, define ρk(x) to be the dis-
tance in R2 from x to its k-th nearest neighbor in X . For
each value of k, ρk is a metric of the radius of the ball needed
to enclose k neighbors. Therefore, ρk(x) is inversely pro-
portional to the local density at point x. Different density
estimations can be obtained using different values of k. For
a fixed k, after sorting the points by their density, we pick a
threshold T as the percentage of the points with the highest
density ρk. The subset of X with the higher T -percent of
density can be denoted by X(k, T ). If we choose a proper
value for k and T , an appropriate representation of the point
cloud can be obtained by extracting X(k, T ) from X . The
analysis ofX(k, T ) can provide advantageous topological in-
formation about the core set around which the data points are
accumulated. As discussed in Section 2, in the delay embed-
dingW , there are a fewer number of transition points between
ellipses having two different angles of rotation. Once we use
random landmark selection on the original point cloud, some
of these points appear in the landmarks with a very low prob-
ability. Consequently, the topology of the landmarks would
be altered by these few number of points. However, the den-
sity of these transition points are much lower than the points
selected from different W ′is. Accordingly, they will not be
included in the subsample Wr(k, T ) extracted from random
landmarks Wr using codensity function.

3.2. Persistent Homology for Parameter Selection

Since our task is to compute the topology of the underlying
manifold, our first task is to obtain a triangulation with the
vertices in the point cloud whose topology coincides with
that of the manifold. This is accomplished by first comput-
ing the Delaunay triangulation of the points, and then remov-
ing all the “big” edges. Perhaps the most important step of
the framework proposed here is in determining this threshold
length for the edges in the triangulation. Persistent homol-
ogy [15], a tool in algebraic topology, is particularly useful
in these situations where the “scale” is not known a priori. It
may be viewed as a generalization of hierarchical clustering
for higher order topological features, which provides a sum-
mary, called the barcode, of topology across all scales. Utiliz-
ing the barcodes obtained from the sample wheeze and nor-
mal breathing signals as our training data, we obtain the ap-
propriate threshold. It also helps in finding appropriate value
for (k, T ). This process is explained in detail in Seciton 3.4.

3.3. Euler Characteristic for Periodicity Detection

The Euler characteristic χ(S) for the surface of polyhedra S
is given as V −E+F where V , E, and F are the numbers of
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vertices, edges and faces in S, respectively. For any topolog-
ical space, the i-th betti number, βi, i ≥ 0 intuitively counts
the number of i-dimensional holes. For example, β0 mea-
sures the number of connected components, β1 the number of
“holes”, etc. The Euler characteristic can also be shown to be
equal to

∑
i≥0(−1)iβi(S), when the Betti numbers of S are

all finite and nonzero only for a finite number of i. Thus,∑
i≥0

(−1)iβi(S) = V − E + F (5)

In this study the embedding dimension is 2. Therefore, the
only Betti numbers that can be nonzero are β0 and β1. More-
over, β0 = 1 since all the point clouds have only one con-
nected component. Accordingly, equation (5) yields to the
following equation for calculating β1,

β1 = 1− V + E − F (6)

Hence, β1 of the point cloud representing the delay embed-
ding of signals with no cyclicity n(t) and w(t) as defined in
(1) are 0 and 1, respectively. We can exploit this fact and
equation (6) to detect the periodicity of the time series. In or-
der to find the number of vertices, edges and faces we build a
triangle mesh over the vertices of the point cloud. Delaunay
triangulation is the natural candidate for this construction. In
order to represent the hole inside the point cloud, we then re-
move the edges longer than a threshold ε to be determined
using persistent homology. Finally, we can find V,E, F and
substitute in equation (6) to find β1. If β1 = 1, the original
signal in time domain has almost periodic structure. Other-
wise, β1 = 0, i.e. there is no cyclicity present in the data.

Using a kd-tree for finding the k-th nearest neighbor, den-
sity based subsampling can be performed with O(mlogm)
complexity. Since Delaunay triangulation is also anO(mlogm)
scheme, the complexity of the whole algorithm would be
O(mlogm) where m is the number of landmarks. Accord-
ingly, the proposed algorithm is very fast since the size of
the landmark set is extremely smaller than the size of the
whole point cloud. Performance and complexity comparison
with other methods has been included in the next section to
demonstrate the advantages of the proposed technique.

3.4. Experimental Results

The wheeze signal in the time domain resembles that of a
sinusoidal wave, justifying their presumed ”musicality”. Ac-
cordingly, we have used the model expressed by Equations (1)
to (3) for wheeze signals. We have performed experiments us-
ing a large number of recorded breathing sound signals taken
from [16], [17] and [18] to support the effectiveness of the
proposed approach. The obtained dataset includes 67 signals,
30 normal breathing sounds and 37 wheezes of various types.
The sampling rate is 4.41 kHz. For each wheeze signal we
choose the interval where wheezes are heard. We then nor-
malize the amplitudes of all the signals between -1 and 1.

Fig. 2: (top-a) The delay embedding of a wheeze with the
phase reversal issue (44,000 points), (b) 200 random land-
marks, (c) its barcode, (middle) density based subsamples us-
ing different choices of k and T , (bottom) their barcodes with
the lengths of the longest bars

Since the size of the dataset is insufficient for straightforward
statistical inference, we use a bootstrapping technique to pro-
vide more data. For each point cloud, we select 10 different
randomly chosen subsets and apply the proposed algorithm
to them. Consequently, we validate the performance of the
technique using 670 breathing sound data.

Figure 2-(top-a) depicts the delay embedding of 1 sec-
ond of a wheeze signal including 44000 points. Although
the point cloud shows a cyclic behavior due to the periodic-
ity of the signal, the transition points have almost filled the
hole inside. Figure 2-(top-b) displays a set of 200 random
landmarks selected from (a). Despite the low density of the
points near origin in part (a), since the landmarks in (b) are
selected randomly there is no hole visible inside them. This
is confirmed by the corresponding barcode in Figure 2-(top-c)
showing no relatively long persistent interval. However, high
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Fig. 3: (a) a barcode selected from Fig. 2, (b) its distribution.
(c) the number of point clouds with a hole corresponding to
the dataset of non-wheeze signals and (d) wheeze signals

density points are concentrated around a ring with low den-
sity points inside and around it. Figure 2-(middle) shows sub-
samples Wr(k, T ) selected out of the random landmarks Wr

using the density based method described in section 3.1 us-
ing 16 different values for (k, T ). For each set of landmarks,
the corresponding barcode and the length of the longest per-
sistent interval lm(b) is computed (Figure 2-(bottom)). This
experiment is performed on a small subset of the data and the
suitable values of k and T are obtained using averaging such
that we get the largest lm(b) and therefore the biggest hole
inside the point cloud. We then exploit the acquired values
for the whole data set. To obtain an appropriate value for ε,
we select two small training sets including signals with and
without almost periodic behavior. The barcodes for each data
in the selected datasets are calculated as a function of the fil-
tration radius r. For each barcode, we then find the distribu-
tion of persistence intervals by calculating the number of bars
present at each filtration radius (Figure 3- a,b). Next, for each
dataset with cyclicity and without it, we calculate the number
of barcodes with nonzero first Betti number as a function of r
(Figure 3- c,d). This plot at each filtration radius demonstrates
the number of point clouds containing a hole corresponding
to the dataset of non-wheeze signals (a) and wheeze signals
(b). As it is clear in Figure 3-(bottom), for ε > 0.11 there is
no barcode with nonzero Betti number in the left plot while
there are a high number of them present in the right plot. We
chose ε = 0.16 to get the maximum difference. The Delaunay
triangulation of the obtained subsamples are then constructed
and the edges longer than the selected ε are eliminated. Figure
4 illustrates this procedure on one of the point clouds shown
in Figure 2-(middle) obtained using the selected values of k
and T . We then use Euler characteristics as expressed in (6)
to calculate β1.

This algorithm is implemented on all 670 data using dif-
ferent numbers of subsamples for performance evaluation. F
measure as the harmonic mean of precision and recall, is used
as a measure of accuracy. For each number of the landmarks,

Fig. 4: Delaunay triangulation of a point cloud selected from
Fig. 2-(middle) and the corresponding modified triangulation

Fig. 5: The performance of the proposed method compared
to CWT and TF based techniques

the computational complexity and accuracy are calculated and
plotted with respect to each other in Figure (5). Previous
wheeze detection approaches are mostly based on time fre-
quency(TF) analysis and wavelet transform(WT). The com-
putational complexity of STFT is O(nlogn) while fast CWT
can be performed in O(n) time. The TF technique proposed
in [19] and WT based method implemented in [19] can also
be found in Figure(5). This plot shows how the accuracy and
complexity is varying by the size of the subsample while other
methods are demonstrated as single points since they use all
data samples after subsampling to a fixed frequency. As it is
clear in the plot, the computational cost of our technique is
much lower than previous methods with a promising perfor-
mance. Note that the approach proposed in [7] has high com-
putational complexity due to the wavelet bispectrum estima-
tion which is a multidimensional function of two frequencies
and is not included in the plot. Additionally, the sensitivity
of our method defined as SE = TP

TP+FN using a subsam-
pling factor of 1% is SE = 98.39% (TP: true posistive, FN:
false negative). On the other hand, the sensitivity of the TF
techniques proposed in [9], [8] are 95.5% and 86.2%.

4. CONCLUSION

In this study, we proposed a topological method to capture al-
most harmonic behavior in signals. A promising performance
and very low computational complexity is achieved by using
density based landmark selection and Euler characteristics.
Moreover, since the proposed approach is based on the global
topological structure of the point clouds, it is robust to miss-
ing data. The experimental result for wheeze detection using
a big dataset of lung sounds validate the effectiveness of the
introduced algorithm.
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