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2 Research Lab. COSIM, Engineering College of Communications of Tunis, University of Carthage

3,∗ ESSEC Business School, CREAR Risk research center
nehla.debbabi@supcom.tn, kratz@essec.edu

ABSTRACT
A Gauss-GPD hybrid model that links a Gaussian distribution

to a Generalized Pareto Distribution (GPD) is considered for

asymmetric heavy tailed data. The paper proposes a new un-

supervised iterative algorithm to find successively the junc-

tion point between the two distributions and to estimate the

hybrid model parameters. Simulation results show that this

method provides a reliable position for the junction point, as

well as an accurate estimation of the GPD parameters, which

improves results when compared with other methods. An-

other advantage of this approach is that it can be adapted to

any hybrid model.

Index Terms— Heavy-tailed data modelling, Hybrid den-

sity estimation, Extreme Value Theory (EVT), Generalized

Pareto distribution (GPD), Unsupervised algorithm.

1. INTRODUCTION

Modelling non-homogeneous and multi-component data is

a problem that challenges scientific researchers in several

fields [1, 2, 3, 4, 5, 6]. In general, it is not possible to find a

simple and closed form probabilistic model to describe such

data. Therefore, it seems natural to consider non-parametric

approaches, such as e.g. kernel density estimation ones [7]

or non-parametric Bayesian methods [8, 9] to name a few.

However, when the multiple components are separable, para-

metric modelling becomes again tractable. Several hybrid

models have been proposed in such context, combining two

or more densities [1, 2, 3, 4, 5]. In this work, we are inter-

ested in the hybrid model that links a Gaussian distribution

to a Generalized Pareto Distribution (GPD), noted G-GPD,

to model asymmetric heavy tailed data, as e.g. in [3]. Why

such a choice of modelling? Since we are interested in fitting

the whole distribution underlying asymmetric heavy tailed

data, the idea is to consider both the mean and tail behav-

iors, and to use limit theorems for each one, as suggested

and developed analytically in [10]. On one hand, the Central

Limit Theorem (CLT) justifies to introduce a Gaussian dis-

tribution for the mean behavior, on the other hand Pickand’s

∗ M. Kratz is also member of MAP5, UMR8145, Univ. Paris Descartes

theorem [11] tells us that the tail of the distribution may be

evaluated through a GPD above a high threshold, using the

Peak Over Threshold (POT) method of the Extreme Value

Theory (EVT). Hence, if the G-GPD modelling may appear

restrictive at first glance, it is in fact quite general since it

could apply to any underlying distribution.

This modelling might be useful in various fields, under the

presence of asymmetric heavy tailed data, as for instance

in (re)insurance when dealing with asymmetric heavy-tailed

claims, or in finance [3, 12]. Other examples can be given

in signal processing, when considering the spike detection in

neural signals in biomedicine [13], or the energy detection

for unknown signals over a fading channels in telecommu-

nication [14], or bearing defect early detection in vibratory

signals in machine diagnostics [15].

The main issue with this modelling is the determination of

the junction point (or threshold) between the distributions,

and the estimation of the different parameters. Much liter-

ature in EVT has been dedicated to the determination and

estimation of the threshold above which the observations can

be modeled by a GPD, via standard POT methods (mean

excess plot method, Hill estimator, QQ-estimator; see e.g.

[13, 16, 17, 18, 19, 20]). The difficulty faced when applying

these methods is that they are graphical ad hoc approaches.

The offline solution of those methods represents an important

disadvantage especially when complexity burden and/or delay

processing are critical. To overcome this difficulty, especially

in practice, unsupervised methods have been developed (e.g.

[2, 3]), in particular in [3] for the G-GPD model.

In this paper we propose a new unsupervised approach for the

selection of the junction point, as well as for the estimation of

the G-GPD parameters. It starts by enforcing the continuity

and the differentiability of the G-GPD probability density

function (pdf) at the junction point, as in [3], but then pro-

ceeds in an iterative way to determine successive thresholds

and parameters of the two distributions that are involved. This

approach does not depend on the choice of initial parameters;

the algorithm starts with a selection of an arbitrary value of

the threshold and stops, when it converges, to a fixed thresh-

old with respect to some given error. We are going to see

that it provides good results, improving the estimation of the
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model when compared with other methods, in particular with

[3]. Note that another great benefit of our method is that it

can be adapted to any other hybrid model, hence can resolve

some non-homogenous data modeling problems.

The remainder of this paper is organized as follows. In

section 2 we describe our iterative algorithm for the un-

supervised threshold determination. Simulation results are

presented in section 3. A comparison of our algorithm with

the one presented in [3], as well as with standard methods of

GPD parameters estimation, is discussed in the same section.

Conclusions follow in the last section.

2. DESCRIPTION OF THE ITERATIVE APPROACH
FOR UNSUPERVISED THRESHOLD SELECTION

Let us introduce the G-GPD hybrid model that we will con-

sider, linking a Gaussian distribution and a GPD at a junction

point denoted by u. It is defined by the pdf:

h(x;u, μ, σ, ξ, β) =

{
γf(x;μ, σ), if x ≤ u
γg(x− u; ξ, β), if x > u

where μ ∈ RRR and σ ∈ R+R+R+ are the mean and the standard

deviation, respectively, of the Gaussian pdf f expressed as

f(x;μ, σ) =
1√
2πσ

exp(− (x− μ)2

2σ2
), ∀x ∈ RRR

while ξ and β represent the tail index and the scale parameter

respectively of the GPD pdf g defined by

g(x; ξ, β) =

{
1
β (1 +

ξ
βx)

−1− 1
ξ , if ξ �= 0

1
β exp(− x

β ), if ξ = 0
∀x ∈ D(ξ, β)

where

D(ξ, β) =

{
[0,∞), if ξ ≥ 0

[0,−β
ξ ], if ξ < 0

The regulator factor γ ensures that the hybrid h is a pdf, i.e.∫
RRR

h(x;u, μ, σ, ξ, β)dx = 1.

It is expressed as a function of the Gaussian cumulative distri-

bution function (cdf) F , with parameters μ and σ, evaluated

at u as

γ =
1

F (u;μ, σ) + 1
.

The corresponding G-GPD cdf H is then expressed as

H(x;u, μ, σ, ξ, β)=

{
γF (x;μ, σ), if x ≤ u

γ(F (u;μ, σ) +G(x− u; ξ, β)), if x > u
,

where G denotes the GPD cdf with parameters ξ and β.

In order to obtain a smooth pdf, the continuity and the dif-

ferentiability of the G-GPD pdf at u are enforced, as in e.g.
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Fig. 1. Gaussian pdf (dotted curve) with parameters μ = 0 and

σ = 1 and G-GPD pdf (continuous curve) with parameters

μ = 0, σ = 1, u = 0.4354, ξ = 0.2 and β = 2.7558.

[3] i.e. f(u;μ, σ) = g(0; ξ, β) and f ′(u;μ, σ) = g′(0; ξ, β).
From these relations a deterministic ξ and β are deduced

as functions of the three remaining parameters u, μ and σ,

namely as

βu = f(u;μ, σ)−1. (1)

ξu = β
(u− μ)

σ2
− 1. (2)

An example of the G-GPD pdf is illustrated in Fig. 1, where

the difference between this latter and the Gaussian distribu-

tion is clearly noticeable.

The main idea of our method, after enforcing the continu-

ity and the differentiability of the G-GPD pdf at the junction

point, is to proceed in an iterative way. Each iteration is com-

posed of two main steps. The first one consists in fitting the

Gaussian distribution, minimizing the Squared Error (SE) be-

tween the G-GPD cdf obtained when considering the thresh-

old determined in the previous iteration, and the empirical G-

GPD one, using the Levenberg Marquardt algorithm [21, 22].

Once the Gaussian parameters μ and σ are determined, the

second step aims at determining the next threshold by mini-

mizing the SE between the G-GPD cdf, admitting these Gaus-

sian parameters, and the empirical G-GPD one, using again

the Levenberg Marquardt algorithm. Note that the GPD pa-

rameters are implicitly determined using the equations given

for the junction point.

2.1. Construction of our iterative algorithm

First, we consider an n-sample X = (xi)1≤i≤n with a G-GPD

as a parent distribution.

Step 1: We start our algorithm by determining the empirical
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G-GPD cdf Hn of the n-sample X defined by

Hn(x) =
1

n

n∑
i=1

1{xi≤x}, ∀x ∈ R,

where 1 denotes the indicator function.

Step 2: We choose an arbitrary initial threshold equal to a cer-

tain quantile of X , say u0, e.g. u0 = q50%, the 50% quantile.

Then, we evaluate the mean μ0 and the standard deviation σ0

of the Gaussian distribution of the first iteration by minimiz-

ing the SE between the G-GPD cdf H , when considering the

threshold u0, and the empirical one Hn using the Levenberg-

Marquardt method [21, 22]. As a matter of fact, we chose to

use this method since it is a robust one for nonlinear system

resolution based on a minimization in the least squares sense.

Hence, the estimates μ̂0 and σ̂0 of the parameters of the Gaus-

sian distribution of the first iteration are obtained as a solution

of the minimization problem:

(μ̂0, σ̂0)= argmin
(μ,σ)∈RRR×R+R+R+

‖H(X;u0, μ, σ, ξu0 , βu0)−Hn(X)‖22 ,

where ξu0
and βu0

are the GPD parameters obtained using

equations (1) and (2) and ‖ . ‖2 denotes the Euclidean norm.

Step 3: In the previous step we fitted the Gaussian part of

the distribution, in this step we will fit the GPD one. To do

so, we keep the threshold û1 that minimizes the SE between

the G-GPD cdf, using the estimated Gaussian parameters μ̂0

and σ̂0, and the empirical one using as well the Levenberg-

Marquardt method. In other words, û1 is the solution of the

minimization problem:

û1 = argmin
u≥0

‖H(X;u, μ̂0, σ̂0, ξu, βu)−Hn(X)‖22 ,

where ∀u ≥ 0, ξu and βu are the GPD parameters relative to

u, obtained using equations (1) and (2).

Step 4: At this stage, we proceed iteratively to fit the normal

distribution and the GPD, simultaneously like we did in step

2 and 3. It means, for each iteration, the estimated Gaussian

parameters are used to find the junction point while this latter

will be used to evaluate the normal parameters of the next

iteration, and so on. This can be written mathematically as

follows: ∀k ≥ 1

• (μ̂k, σ̂k)← argmin
(μ,σ)∈RRR×R+R+R+

‖H(X; ûk, μ, σ, ξûk
, βûk

)−Hn(X)‖22

• ûk+1 = argmin
u≥0

‖H(X;u, μ̂k, σ̂k, ξu, βu)−Hn(X)‖22
• The algorithm stops when the following condition is sat-

isfied

‖uk+1 − uk‖22 < ε

with ε > 0, small enough.

Hereafter, we present the pseudocode associated to this algo-

rithm.

2.2. Pseudocode of the proposed algorithm

Algorithm 1 Iterative algorithm for unsupervised threshold

determination and G-GPD parameters estimation

Initialization of u0, ε

1: Determination of the empirical G-GPD cdf Hn of the n-

sample X = (xi)1≤i≤n

2: Estimation of μ̂0 and σ̂0 when considering u0;

(μ̂0, σ̂0)← argmin
(μ,σ)∈RRR×R+R+R+

‖H(X;u0, μ, σ, ξu0 , βu0)−Hn(X)‖22

(βu0
, ξu0

) are satisfying (1) and (2).

3: Determination of the first threshold û1, using the fixed

Gaussian parameters (μ̂0, σ̂0);

û1 ← argmin
u≥0

‖H(X;u, μ̂0, σ̂0, ξu, βu)−Hn(X)‖22

4: Iterative process;

k ← 1
while ‖ûk − ûk−1‖22 ≥ ε

(μ̂k, σ̂k)← argmin
(μ,σ)∈RRR×R+R+R+

‖H(X; ûk, μ, σ, ξûk
, βûk

)−Hn(X)‖22

ûk+1 ← argmin
u≥0

‖H(X;u, μ̂k, σ̂k, ξu, βu)−Hn(X)‖22

k ← k + 1
end while

return (uk+1, μk, σk, ξuk+1
, βuk+1

)

3. SIMULATION RESULTS AND DISCUSSION

To assess the performance of our algorithm in terms of ac-

curate estimation of the G-GPD model, we build on Monte

Carlo simulations. In order to do this, we simulate 100 data

sets of length n = 105, denoted by Xk = (xk
i )1≤i≤n,

∀1 ≤ k ≤ 100, following the G-GPD distribution for a given

fixed parameters θ = (u, μ, σ, ξu, βu). For each data set, we

determine the estimate θ̂k = (ûk, μ̂k, σ̂k, ξûk , βûk) of θ
using our algorithm. Then, we calculate the Kullback-Leibler

(K-L) divergence, measuring the difference between the G-

GPD pdf with parameter θ and the corresponding estimated

one. It is defined as follows:

DKL(hk ‖ ĥk) =
1

n

n∑
i=1

hk(x
k
i ) log

(
hk(x

k
i )

ĥk(xk
i ))

)
,

where hk(X
k) = h(Xk;u, μ, σ, ξu, βu)

and ĥk(X
k) = h(Xk; ûk, μ̂k, σ̂k, ξûk , βûk), ∀1 ≤ k ≤ 100.
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The closest to 0 the K-L divergence is, the most accurate

evaluation of the G-GPD model we obtain. To test the relia-

bility of the G-GPD model parameters estimation, we choose

the average of DKL(hk ‖ ĥk), 1 ≤ k ≤ 100, as evaluation

criterion. Table 1 gives the average K-L divergence obtained

for three different examples of simulated data sets. The first

G-GPD model is simulated with ξ = 0.2, μ = 0 and σ = 1,

the second one with ξ = 1, μ = 2 and σ = 1 while the third

with ξ = 0.5, μ = 1 and σ = 1. We mention that for each

case the exact values of β and u are determined using the ob-

tained relations between the model parameters at the junction

point. Table 1 exhibits the performance of our algorithm, the

average K-L divergence being less than 10−3. Comparing

the results obtained with our method and Method [3], we

see that the G-GPD model evaluation is enhanced using our

algorithm.

Note that, based on simulations, our algorithm converges

regardless the choice of the initial value of threshold. It is ob-

vious that the convergence will be slower if the chosen value

of initial threshold is far from the real junction point. For

the simulations, we chose u0 = H−1
n (0.5) and ε = 10−12 as

initial parameters where H−1
n denotes the inverse empirical

cdf.

Besides the reliable determination of the threshold, our al-

gorithm shows a good performance in terms of the GPD

parameters estimation. To highlight this point, we compare

the obtained results using our method with standard statisti-

cal methods [23, 24]. Several methods in literature have been

developed for the estimation of the GPD parameters, among

which the MOments Method (MOM) based on the use of the

first and the second moment of the GPD. Knowing that the

GPD distribution admits a finite moment of order k if and

only if the tail index ξ < 1
k , the performance of the MOM

decreases when ξ ≥ 1
2 . The Probability Weighted Moments

(PWM) method, has then been proposed in [23] extending

the MOM when ξ < 1, but the estimation of the GPD pa-

rameters is still unreliable for ξ ≥ 1. Another statistical

method, well used in literature, is the Maximum Likelihood

Method (MLM) [23]. The limitation of this method is that

it can returns a local maximum instead of the global one.

To overcome the encountered problem, Zhang has proposed a

specific method in [24] for any value of ξ based on a Bayesian

analysis. Nevertheless, it remains an ad-hoc method.

We show in Table 2 that our method for G-GPD parameters

estimation goes over those encountered problems. Indeed,

when revisiting Examples 2 and 3, we can compare in Ta-

ble 2 the mean value of the estimated GPD tail parameter ξkû,

∀1 ≤ k ≤ 100, as well as the mean value of the GPD shape

parameter βk
û, ∀1 ≤ k ≤ 100, when using our algorithm

and existing methods. We can easily infer the reliable estima-

tion of the GPD parameters obtained via our algorithm, when

computing the mean squared error (mse) between the exact

and the estimated parameters via the different methods.

Example 1 Example 2 Example 3

Method [3] 1.6664 10−4 8.9004 10−5 5.3537 10−5

Our meth. 1.6591 10−4 4.3661 10−5 3.2163 10−5

Table 1. Comparison of the average K-L divergence obtained

using our method and the one presented in [3] for three dif-

ferent examples: Example 1 for ξ = 0.2, μ = 0 and σ = 1,

Example 2 for ξ = 1, μ = 2 and σ = 1 while the third with

ξ = 0.5, μ = 1 and σ = 1.

Our meth. MOM PWM MLM Zhang
Generated data sets with ξ = 1, μ = 2, and σ = 1

ξ = 1 0.9992 0.4992 0.835 0.5007 0.5007

mse(ξ) (10−3) 0.2347 250.74 30.2165 249.327 249.313

β = 3.0905 3.0917 25.0006 6.6813 8.2346 8.2347

mse(β) 0.24 10−3 877.28 12.991 26.464 26.465

Generated data sets with ξ = 0.5, μ = 1, and σ = 1

ξ = 0.5 0.4991 0.4191 0.105 0.1876 0.1877

mse(ξ) (10−3) 0.1346 7.5503 156.55 97.609 97.532

β = 2.8727 2.8735 4.2269 5.5153 5.6406 5.636

mse(β) 0.16 10−3 1.8692 13.275 7.6647 7.6367

Table 2. Comparison of the mean estimates of the GPD pa-

rameters using our method and existing ones, obtained from

100 generated data sets for two different cases,

(ξ, μ, σ) = (1, 2, 1) and when (ξ, μ, σ) = (0.5, 1, 1), respec-

tively.

4. CONCLUSION

This paper proposes a new numerical method, with an it-

erative algorithm for unsupervised threshold detection for a

Gauss-GPD hybrid model that links a Gaussian distribution

to a GPD. Simulation results show that our method enhances

the evaluation of the junction point as well as the estimation

of the two distributions parameters, in particular compared

with the method proposed in [3]. Besides the accurate de-

termination of the threshold (or junction point), we obtain a

better estimation of the GPD parameters than with standard

methods. We also avoid the issue of hand supervising. As

a follow up, it would be interesting to explore a new hybrid

model with two junction points introducing an intermediate

behavior between the Gaussian distribution and the GPD.
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