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ABSTRACT

A Bayesian framework for network detection is developed
based on random walks on graphs. Networks are detected using
partial observations of their activity, and the Bayesian approach
is proved to be optimum in the Neyman-Pearson sense, assum-
ing random walk propagation on a given graph and diffusion
model with absorbing states. The equivalence of the random
walk and harmonic solutions to the Bayesian formulation is
proven. A general diffusion model is introduced that utilizes
spatio-temporal relationships between vertices, and is used
for a specific space-time formulation that leads to significant
performance improvements.

1. INTRODUCTION

A new Bayesian approach to network detection [4, 6, 8, 10–
13, 19–21] is developed and analyzed. The novel approach in-
volves propagating cued threats from one or more observations
on an underlying graph, an a priori threat diffusion model, and
a new threat propagation model based on random walks on the
graph, using Markov chains with absorbing states. The ran-
dom walk framework provides a connection with many other
well-known graph analytic methods that may also be posed in
this context [1,2,10,14]. The resulting network detection algo-
rithm is proved to be optimum in the Neyman-Pearson sense of
maximizing the probability of detection at a fixed false alarm
probability.

2. BAYESIAN NETWORK DETECTION

Network detection is the problem of identifying a specific sub-
graph within a given graph G = (V, E) [3,4,6,8,10–13,21]. As-
sume that within G, a foreground or “threat” network VΘ exists
defined by an (unknown) {0, 1}-valued discrete random function
Θ ∈ V (G), the vertex space of functions f : V → {0, 1}. A ver-
tex v ∈ V is in the foreground if Θv = 1, otherwise v is in the
background, i.e. VΘ = { v : Θv = 1}.

A network detector φ on G is a {0, 1}-valued function
φ ∈ V (G). The correlation between a network detector φ and
the actual threat network defined by the function Θ determines
the detection performance of φ, measured using the detector’s
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probability of detection (PD) and probability of false alarm
(PFA). The network detection problem for a graph G of order N
results in 2N-ary multiple hypothesis test over the vertex space
V (G), and, when detection optimality is considered, an opti-
mal test involves partitioning the measurement space into 2N

regions yielding a maximum PD. This NP-hard combinatoric
problem is clearly computationally and analytically intractable;
however, the general 2N-ary multiple hypothesis test may be
greatly simplified by applying the random walk model, which
via Eq. (1) reduces the 2N-ary multiple hypothesis test to N
independent binary hypothesis tests.

The Bayesian model developed here depends upon threat
observation and propagation over both space and time, and the
underlying probabilistic models that govern inference from ob-
servation to threat, then propagation of threat throughout the
graph. General observation models are provided next, then ap-
plied with threat propagation models to specific contexts. An
observation on the graph is a vector z : { vb1 , . . . , vbC } ⊂ V →
M ⊂ RC from C vertices to a measurement space M ⊂ RC .
Bayes’s rule for determining how likely a vertex is to be a fore-
ground member or not depends on the model linking observa-
tions to threat. The conditional probability density f

(
z(v) | Θv

)
is called the observation model of vertex v ∈ V .

This section is devoted to the development of Bayesian
methods of using measurements on a graph to determine the
probability of threat on a graph, then showing that these meth-
ods are optimum in the Neyman-Pearson sense of maximizing
the probability of detection at a given false alarm rate. The mo-
tivating problem is to detect the foreground graph GΘ = G[VΘ]
in the graph G = (V, E) with an unknown foreground Θ ∈ V (G)
and known observation vector z(v1, . . . , vk).

2.1. Spatial Threat Propagation

We wish to compute the probability of threat θv = P(Θv | z)
at all vertices in a graph G given an observation z(vb1 , . . . , vbC ).
There is an a priori probability ψv at each vertex representing
threat diffusion at v ∈ V , the probability that threat propagates
through that vertex to a neighbor. The threat diffusion model of
a graph G is the a priori {0, 1}-valued event Ψv that threat Θv

propagates through v with probability ψv.
Threat propagation on the graph from the observed vertices

to all other vertices is defined as an average over all random
walks between the observations to the rest of the graph. As-
sume that G = (V, E) is strongly connected, and let θvb1

, . . . , θvbC

be the threat probabilities at observed vertices vb1 , . . . , vbC . For
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Fig. 1. Illustration of the random walk representation for threat
propagation for the case of a single observation. The upper il-
lustration shows the simplest, trivial case with a single hop from
the observation to the vertex. The middle illustration shows the
next simplest case with multiple hops. The lower illustration
shows an example of the general case, comprised of the simpler
multiple hop case.

a random walkv→vbc
on G from v to observed vertex vbc with

transition matrix T and sequence (vw1=v, . . . , vwL =vbc ), if events
Ψwl ≡ 1 for all vertices wl along the walk, then the threat prop-
agation from vbc to v along walkv→vbc

is defined to be the prob-
ability θvbc

. Threat propagation to vertex v is defined as the
expectation of threat propagation to v along all random walks
emanating from v and terminating at an observed vertex.

An equivalent definition of threat propagation assigns the
random variable

Θ̄v = lim
K→∞

1
K

∑
k

Iwalk(k)
v→vbc(k)

Θ(k)
vbc(k)

(1)

via independent random walks that terminate at vbc(k) with indi-
cator function Iwalk(k)

v→vbc(k)

=
∏L

l=1 Ψ
(l)
vwl

, multiplied by indepen-

dent draws Θ
(k)
vbc(k)

of the observed threat. Figure 1 illustrates

threat propagation. By the law of large numbers, Θ̄v
a.s.
→ θv as

K → ∞. Each step of the random walk is defined by the transi-
tion probabilities tvu from vertex v to u, multiplied by the a pri-
ori probability ψv that threat propagates through v. The simplest
models for both the transition and a priori probabilities are uni-
form: ti j = 1/ degree(vi), i.e. T = D−1A, and ψv ≡ 1, where T,
D, and A are, respectively, the transition, degree, and adjacency
matrices. This definition of threat propagation has two, equiva-
lent interpretations: stochastic and probabilistic.

2.1.1. Stochastic Realization Approach

The stochastic realization interpretation of the Bayesian threat
propagation is given by Eq. (1), i.e. probability of threat θv at v

equals the threat probability averaged over all random walks
emanating from v. This is equivalent to an absorbing Markov
chain with absorbing states [16] at which random walks ter-
minate. The absorbing vertices for the threat diffusion model
are the C observed vertices, and an augmented state reachable
by all unobserved vertices representing a transition from threat
to non-threat with probability 1 − ψv. The (N + 1)-by-(N + 1)
transition matrix for the Markov chain corresponding to threat
propagation equals

T =


N−C C 1

N−C G H 1 −ψN−C

C 0 I 0
1 0 0 1

 (2)

in which G and H are defined by the block partition

ΨD−1A =

(N−C C

N−C G H
C ∗ ∗

)
(3)

with ‘∗’ denoting unused blocks, ψN−C = (ψ1, ψ2, . . . , ψN−C)T

is the vector of a priori threat diffusion probabilities from 1
to N −C and Ψ = Diag(ψv) a diagonal matrix. The observed
vertices vb1 , . . . , vbC are assigned to indices N −C + 1, . . . ,
N, and the augmented non-threatening state is assigned to in-
dex N + 1. Ignoring the a priori probabilities, this is also pre-
cisely the stochastic realization model for equilibrium thermo-
dynamics and solutions to Laplace’s equation [15, 18].

The probability of threat on the graph is determined by the
vector θa =

(
θi
θa

b

)
such that Tθa = θa and θa

b is determined by
the probabilities of threat θN−C+1, . . . , θN at observed vertices
vb1 , . . . , vbC along with zero threat θa

N+1 = 0 at the augmented
“non-threat” vertex. The vector that satisfies the proscribed
boundary value problem equals,

θa =

(
(I −G)−1Hθb

θa
b

)
(4)

where G and H are defined in Eq. (3). As is well-known [16],
the “hitting” probabilities of a random walk from an unob-
served vertex to an observed vertex are given by the matrix
U = (I −G)−1H; therefore, an equivalent definition of threat
probability θv from Eq. (4) is the probability that a random
walk emanating from v terminates at an observed vertex, con-
ditioned on the probability of threat over all observed vertices:

θv =
∑

c
P(walkv→vbc

)P(Θvbc
). (5)

The existence of a positive solution to Eq. (4) follows from a
generalization of the Perron-Frobenius theorem for a special
class of reducible nonnegative matrices [20].

2.1.2. Probabilistic Approach

The probabilistic equation for threat propagation from the
neighbors of a vertex v follows immediately its definition by
first-step analysis, yielding the threat propagation equation:

θv = ψv

∑
u∈N(v)

tvuθu and θv =
ψv

dv

∑
u∈N(v)

θu (6)
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in which N(v) =
{
u : (v, u) ∈ E

}
denotes the neighborhood of

vertices adjacent to v. The first equation of Eq. (6) is a general
case of space-time threat propagation [19, 21] and equivalent
to the stochastic approach described above. The second equa-
tion arises for the simplest case of uniform transition probabil-
ities, T = D−1A. Expressed in matrix-vector notation, Eq. (6)
becomes

θ = ΨTθ and θ = ΨD−1Aθ, (7)

where (θ)v = θv. The threat probabilities at the observed ver-
tices vb1 , . . . , vbC are determined by the observation model.
Threat probabilities at all other vertices are determined by solv-
ing Eq. (6), as with all Laplacian boundary value problems.

The threat propagation equation Eq. (7) written as

Łψθ = 0, (8)

in which Łψ def
= I −ΨD−1A is the generalized Laplacian op-

erator, connects the generalized asymmetric Laplacian matrix
of with threat propagation, the solution of which itself may be
viewed as a boundary value problem with the harmonic oper-
ator Łψ . Given observations at vertices vb1 , . . . , vbC , the har-
monic threat propagation equation is(

Łψii Łψib
)(
θi
θb

)
= 0 (9)

where the generalized Laplacian Łψ =
(Łψii
Łψbi

Łψib
Łψbb

)
and the threat

vector θ =
(
θi
θb

)
have been permuted so that observed vertices

are in the ‘b’ blocks (the “boundary”), unobserved vertices are
in ‘i’ blocks (the “interior”), and the observation vector θb is
given. The harmonic threat is the solution to Eq. (9),

θi = −(Łψii )−1(Łψibθb). (10)

It can be shown that the vector θ =
(
θi
θb

)
∈ RN is a nonnega-

tive solution to the boundary value problem of Eqs. (9)–(10) if
and only if the augmented vector θa =

(
θi
θa

b

)
∈ RN+1 of Eq. (4)

is a stationary vector of the absorbing Markov chain transition
matrix T of Eq. (2) with given values θa

b [20].
A simple model for the a priori probabilities is degree-

weighted threat propagation (DWTP), ψv = d−1
v in which threat

is less likely to propagate through high-degree vertices. An-
other simple model sets the mean propagation length propor-
tional to the graph’s average path length l(G) yields length-
weighted threat propagation (LWTP) ψv ≡ 2−1/ l(G). For almost-
surely connected Erdős-Rényi graphs with p = n−1 log n, l(G) =

(log n − γ)/ log log n + 1/2 and γ = 0.5772 . . . is Euler’s con-
stant [9]. A model akin to breadth-first search (BFS) sets the
a priori probabilities to be inversely proportional to the Dijkstra
distance from observed vertices, i.e. ψv ∝ 1/ dist(v, { vb1 , . . . , vbC }).

2.1.3. Connections with Spectral Detection Methods

Whereas threat propagation involves the harmonic solution to
a boundary value problem with the graph Laplacian, spectral
methods solve the graph partitioning problem by optimizing
various subgraph connectivity properties [4, 7, 8]. Though the

optimality criteria for spectral methods and threat propagation
are different, all these network detection methods must address
the fundamental problem of avoiding the trivial solution of con-
stant harmonic functions on graphs. Fiedler showed that if the
eigenvector ξ1 corresponding to the second smallest eigenvalue
λ1(D − A) of the (unnormalized) graph Laplacian is used (the
smallest is λ0 ≡ 0), then for every nonpositive constant c ≤ 0,
the subgraph whose vertices are defined by the threshold ξ1 ≥ c
is necessarily connected [8]. This “relaxation” approach pro-
vides an approximate solution to the problem of minimizing the
cut size of a subgraph—the number of edges necessary to re-
move to separate the subgraph from the graph, which is equiv-
alent to the quadratic optimization problem maxs sTQs, where
s = (±1, . . . ,±1)T is a ±1-vector who entries are determined by
subgraph membership [17].

Because spectral detection with its implicit assumption of
minimizing the cut size oftentimes does not detect intuitively
appealing subgraphs, Newman introduced the alternate crite-
rion of subgraph “modularity” for subgraph detection [13].
Rather than minimize the cut size, Newman proposes to max-
imize the subgraph connectivity relative to background graph
connectivity, which yields the quadratic maximization prob-
lem maxs sTMs, where M = A − V−1ddT is Newman’s modu-
larity matrix, (d)i = di is the degree vector, and V = 1Td is the
graph volume [13]. Newman’s modularity-based graph parti-
tioning algorithm, also called community detection, involves
thresholding the values of the principal eigenvector of M.
Miller et al. [11] also consider thresholding arbitrary eigenvec-
tors of the modularity matrix, which by the Courant minimax
principle biases the Newman community detection algorithm to
smaller subgraphs, a desirable property for many applications.

As shown below in Section 2.3, the threat propagation al-
gorithm optimizes the probability of detecting a subgraph for a
specific Bayesian model, i.e. threat propagation is optimum in
the Neyman-Pearson sense. Therefore, both spectral detection
methods and threat propagation may be viewed as solutions to
different optimization problems involving the graph Laplacian.

2.2. Space-Time Threat Propagation

Many important network detection applications, especially net-
works based on vehicle tracks and computer communication
networks, involve directed graphs in which the edges have de-
parture and arrival times associated with their initial and termi-
nal vertices. Space-Time threat propagation is used compute
the time-varying threat across a graph given one or more obser-
vations at specific vertices and times [19,21]. In such scenarios,
the time-stamped graph G = (V, E) may be viewed as a space-
time graph GT = (V × T, ET ) where T is the set of sample times
and ET ⊂ [V × T ]2 is an edge set determined by the temporal
correlations between vertices at specific times.

The advantage of time-stamped edges is that the times can
be used to detected temporally coordinated network activity.
According to this model of threat networks, the a priori proba-
bility that a threat propagates through vertex v at time tk is de-
termined by the Poisson process used to model the probability
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of threat as a function of time:

ψv(tk) =
1
dv

∑
u,l

kvu;kl, (11)

where dv is the spatial degree of vertex v, i.e. the number of
interactions associated with a spatial vertex, and kvu;kl = (Kuv

τ )kl

is the discretized space-time kernel [21].

2.3. Neyman-Pearson Network Detection

Network detection of a subgraph within a graph G = (V, E) of
order N is treated as N independent binary hypothesis tests to
decide which of the graph’s N vertices does not belong (null hy-
pothesis H0) or belongs (hypothesis H1) to the network. Maxi-
mizing the probability of detection (PD) for a fixed probability
of false alarm (PFA) yields the Neyman-Pearson test involv-
ing the log-likelihood ratio of the competing hypothesis. We
will derive this test in the context of network detection, which
both illustrates the assumptions that ensure detection optimal-
ity, as well as indicates practical methods for computing the
log-likelihood ratio test and achieving an optimal network de-
tection algorithm. It will be seen that a few basic assumptions
yield an optimum test that is equivalent to the Bayesian threat
propagation algorithm. An application of Bayes’ theorem to the
harmonic threat θv = f (Θv | z) provides the optimum Neyman-
Pearson detector

f (z | Θv = 1)
f (z | Θv = 0)

H1(v)
≷

H0(v)
λ (12)

because

f (z | Θv = 1)
f (z | Θv = 0)

=
f (Θv = 1 | z)
f (Θv = 0 | z)

·
f (Θv = 0)
f (Θv = 1)

=
θv

1 − θv
·

f (Θv = 1)
f (Θv = 0)

H1(v)
≷

H0(v)
λ, (13)

results in a threshold of the harmonic space-time threat prop-

agation vector, θ
H1
≷
H0

threshold, with the prior ratio f (Θv = 1)/

f (Θv = 0) and the monotonic function θv 7→ θv/(1 − θv) being
absorbed into the detection threshold. This establishes the de-
tection optimality of harmonic space-time threat propagation.

Because the probability of detecting threat is maximized at
each vertex, the probability of detection for the entire subgraph
is also maximized, yielding an optimum Neyman-Pearson test
under the simplification of treating the 2N-ary multiple hypoth-
esis testing problem as a sequence of N binary hypothesis tests.
Summarizing, the probability of network detection given an
observation z is maximized by computing f (Θv | z) using a
Bayesian threat propagation method and applying a simple like-
lihood ratio test.

3. DETECTION PERFORMANCE

The ROC performance between space-time threat propagation
[STTP; Section 2.2], breadth-first search spatial-only threat
propagation [BFS], and modularity-based spectral detection
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Fig. 2. Detection ROC curves of the three different algorithms
at two levels of foreground activity rfg = 1.1, 2 that define its
Erdős-Rényi connectivity rfg· log Nfg/Nfg. Data is simulated us-
ing the stochastic blockmodel, N = 256, Nfg = 30, with 1000
Monte Carlo trials each with an independent draw of the ran-
dom network and single threat observation.

[SPEC] [11] are illustrated in Figure 2 for a stochastic block-
model [22] with varying activity. By the classical result of
Erdős-Rényi [5], each community is almost surely connected
iff Skk > log Nk/Nk in which Nk is the number of vertices in
community k. We introduce the activity parameter rk ≥ 1 and
set Skk = rk log Nk/Nk to adjust a community’s density rela-
tive to its Erdős-Rényi connectivity threshold. The simulations
show that excellent ROC performance is achievable if temporal
information is exploited (STTP) with highly coordinated fore-
ground network with sparse to moderate connectivity. Spectral
methods, which are designed to detect highly connected net-
works, perform poorly on sparse foreground networks, and
improve as foreground network connectivity increases.

4. CONCLUSIONS

A Bayesian framework for network detection can be used to
unify the different approaches of network detection algorithms
based on random walks and algorithms based on spectral prop-
erties. Bayesian space-time threat propagation with diffusion is
interpreted both as a random walk on a graph and, equivalently,
as the solution to a harmonic boundary value problem. Bayes’
rule determines the unknown probability of threat on the uncued
nodes based on threat observations at cue nodes. In the impor-
tant situation of low foreground activity with coordination, the
examples show the superior detection performance of Bayesian
space-time threat propagation compared to other spatial-only
and uncued spectral methods.
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