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ABSTRACT

This paper addresses the problem of discriminating two dif-

ferent vector lines from a non-zero mean Gaussian noise vec-

tor. Under each hypothesis, the Gaussian noise vector is com-

pletely characterized by its expected value which belongs to

a known vector line. A new criterion of optimality, namely

the epsilon most stringent test, is proposed and studied. This

criterion consists in minimizing the maximum shortcoming

of the test, up to a small loss, subject to a constrained false

alarm probability. The maximum shortcoming corresponds to

the maximum gap between the power function of the test and

the envelope power function which is defined as the supre-

mum of the power over all tests satisfying the prescribed false

alarm probability. It is numerically shown that the proposed

test outperforms the generalized likelihood ratio test.

Index Terms— Statistical hypothesis, Most stringent test,

Subspace classification, Generalized likelihood ratio test.

1. INTRODUCTION

The problem of classifying a vector in noisy measurements

appears in many applications including radar and sonar sig-

nal processing [1, 2], image processing [3], speech segmen-

tation [4, 5], quantitative non-destructive testing [6], network

monitoring [7, 8] and digital communication [9] among oth-

ers. The problem of discriminating two subspaces given some

noisy observations is a common but difficult problem, even in

the simplest case where each subspace is a vector line. The

main difficulty is due to the fact that each hypothesis is com-

posite since the expected mean of the observation can take an

infinite number of values. The common solution is the near-

est mean classifier [10, 11], corresponding to the Generalized

Likelihood Ratio Test (GLRT), which discriminates two sub-

spaces by affecting the observation vector to the closest sub-

space but it is not yet established whether the nearest mean

classifier is optimal in the case of Gaussian observations.

The observation model has the form y = xi hi + ξ where

y ∈ R
n is the measurement vector and i ∈ {1, 2}. The

unit vectors h1 and h2 which define the one-dimensional sub-

spaces are known. The scale factors x1 and x2 are unknown

and deterministic. The zero-mean Gaussian noise vector ξ

has the known covariance matrix Σ. The main objective is to

specify the index i of hi occurring in y whatever xi.

To deal with this problem, traditional criterions like most

powerful test [2], constrained minimax test [12, 13], Bayesian

test [14] and invariant test [15] are not appropriate since the

basic assumptions required for their derivation are not satis-

fied (no one-sided problem, no prior distribution, no indiffer-

ence zone between hypotheses, no symmetry). A reasonable

definition of a general criterion of optimality can be given

in terms of the envelope power that corresponds to the supre-

mum of the probability of correct detection over all tests satis-

fying a prescribed false alarm probability. The Most Stringent

(MS) test is the test whose maximum gap between its power

of detection and the envelope power is minimum [16, 17] sub-

ject to a constrained false alarm probability. Even if the exis-

tence of this test is established in [16], its design may be very

difficult and the value of the maximum gap, also called the

maximum shortcoming, remains unknown.

The first contribution of this paper is the design of an Ep-

silon Most Stringent (EMS) test solving the detection prob-

lem. It is epsilon optimal in the sense that it is optimal with

a loss of a small part, say ε, of optimality with respect to the

theoretical MS test [18]. This loss of optimality is acceptable

since the MS test is untractable due to the difficulties above

mentioned. Secondly, the statistical performances of the test,

namely its false alarm probability function and its power func-

tion, are calculated in a closed-form. Finally, it is numerically

shown that the GLRT is suboptimal in the sense of the most

stringent criterion.

The paper is organized as follows. Section 2 starts with

the problem statement. Section 3 derives the EMS test. Sec-

tion 4 numerically shows that the EMS test outperforms the

GLRT. Finally, Section 5 concludes this paper.

2. PROBLEM STATEMENT

The classification problem is stated as the choice between the

two composite hypotheses

H1 :
{

y ∼ N (x1 h1, In) , x1 ∈ R
}

,

H2 :
{

y ∼ N (x2 h2, In) , x2 ∈ R
∗
}

, (1)

where n is the size of y ∈ R
n, In is the identity matrix of

order n and N (m,Σ) denotes the multivariate normal distri-

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 3454



bution with the mean m and the positive definite covariance

matrix Σ. Let ‖·‖ denote the Euclidean norm. The vectors

h1 ∈ R
n and h2 ∈ R

n are known, h1 6= h2 and it is assumed

without any loss of generality that ‖h1‖ = ‖h2‖ = 1 since

the scale factors x1 and x2 are unknown (x2 6= 0 ensures that

the two hypotheses are distinguishable). Let Θ1 = span (h1)
and Θ2 = span (h2) \ {0} be the one-dimensional spaces

spanned by the vectors h1 and h2 with and without the null

vector, respectively. Testing H1 against H2 is equivalent to

decide if the mean of y belongs to the space Θ1 or Θ2. With-

out any loss of generality, it is assumed that the covariance

matrix of y is reduced to In. Let η be the angle, defined by

cos(η) = h⊤1h2, (2)

between h1 and h2 where h⊤ denotes the transpose of h.

Due to the spherical symmetry of the normal distribution with

identity covariance matrix, il is assumed that 0 < η ≤ π
2 .

The detection of sinusoidal signals [1] is a good illustra-

tion of this classification problem. Given the received se-

quence y(k) for k = 1, . . . , n, the goal is to decide between

H1 :
{

y(k)=x1 cos(ω1k + φ1) + ξ(k), x1 ∈ R, ∀ k
}

,

H2 :
{

y(k)=x2 cos(ω2k + φ2) + ξ(k), x2 ∈ R
∗, ∀ k

}

where the angular frequencies ω1 and ω2 and the phases φ1

and φ2 are known. The amplitudes x1 and x2 are unknown.

The sequence ξ(k) is a (possibly correlated in time) Gaussian

noise whose covariance matrix is known.

A statistical test δ is a function of Rn into {H1,H2} such

that hypothesis Hi is accepted if δ(y) = Hi [16, 19]. Let

Kα =

{

δ : sup
x1∈R

Prx1h1
(δ(y) = H2) ≤ α

}

(3)

be the class of tests of level α with an upper-bounded false

alarm probability α, where Prθ(·) stands for y being gen-

erated by the distribution N (θ, In). The statistical perfor-

mances of the test are characterized by the false alarm func-

tion αδ(θ) = Prθ(δ(y) = H2), ∀θ ∈ Θ1, and the power

function βδ(θ) = Prθ(δ(y) = H2), ∀θ ∈ Θ2. The envelope

power function [16] is defined by

β∗
α(θ) = sup

δ∈Kα

βδ(θ) (4)

for all θ ∈ Θ2. The envelope power function β∗
α(θ) is the

maximum power that can be attained at level α for testing H1

against the simple hypothesis H2(θ):

H2(θ) :
{

y ∼ N (θ, In)
}

. (5)

It is clear that H2 = ∪θ∈Θ2
H2(θ). Let γδ,α(θ) be the short-

coming of the test δ in θ ∈ Θ2 with respect to the class Kα:

γδ,α(θ) = β∗
α(θ)− βδ(θ) ≥ 0. (6)

Let γmax
δ,α = supθ∈Θ2

γδ,α(θ) be the maximum shortcoming

of δ with respect to all possible vectors θ ∈ Θ2.

Definition 1 A test δ∗ is an Epsilon Most Stringent (EMS)

test in Kα betweenH1 andH2 if there exists a (small) positive

value ε such that the two following conditions are fulfilled:

1. δ∗ ∈ Kα,

2. γmax
δ∗,α ≤ γmax

δ,α + ε for any test δ ∈ Kα.

Obviously, if the constant ε is zero, the EMS test coincides

with the Most Stringent (MS) test [16, 20]. Contrary to the

MS test, the design of the EMS test tolerates small appropriate

approximations of the error probabilities, which can be very

useful when the exact calculation of the error probabilities

is untractable [13]. Moreover, the MS test may have a very

complicated form whereas the EMS test can have a simplified

form. Finally, since it is proved that the MS test always exists

for testing H1 against H2, it guarantees the existence of the

EMS test. Choosing the lowest values for ε is of interest but

difficult. This paper proposes an EMS test with an acceptable

loss of optimality ε as shown in Section 4.

3. EPSILON MOST STRINGENT TEST

This section proposes a new test and studies its statistical per-

formances. It shows that the proposed test is an EMS test by

comparing its power function to the envelope power function.

3.1. Envelope Power Function

Let θ2 = xh2 for a given value x 6= 0. The envelope power

function β∗
α(θ2), given in (4), at point θ2 can be calculated by

looking for the most powerful test for testing

H1 :
{

y ∼ N (x1 h1, In) , x1 ∈ R
}

,

H2(θ2) :
{

y ∼ N (θ2, In)
}

. (7)

Here, the hypothesis H2(θ2) is simple since θ2 is fixed. Let

θ1 = (h⊤1θ2)h1 = x cos(η)h1 be the orthogonal projection

of θ2 onto the vector line span (h1). From [19, Section 45.4],

the test δθ2
(y), given by

δθ2
(y) =

{

H1 if Λθ2
(y) = y⊤(θ2−θ1)

‖θ2−θ1‖
≤ λα,

H2(θ2) else,
(8)

where λα = Φ−1(1−α), is the most powerful test for testing

H1 and H2(θ2) in Kα. Here, the standard Gaussian cumula-

tive distribution function is denoted by Φ(·) and its inverse is

Φ−1(·). It follows that

β∗
α(θ2) = Prθ2

(Λθ2
(y) > λα)

= Φ(|x| sin(η)− λα) = β∗
α(x). (9)
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3.2. Proposed Test and its False Alarm Function

This subsection proposes a test for testing H1 and H2 and it

studies the false alarm function. Let δ̂ : Rn 7→ {H1,H2} be

the test defined by

δ̂(y)=

{

H1 if Λ̂(y)=
∣

∣h⊤2y
∣

∣−
∣

∣cos(η)h⊤1y
∣

∣ ≤ λ̂,
H2 else,

(10)

where λ̂ is a threshold and cos(η) is defined in (2). A short

calculation shows that δ̂(y) asymptotically coincides with a

MS test when the absolute value of x is fixed and sufficiently

large. This fact motivates the choice of this test as an EMS test

whatever x 6= 0. The following propositions calculates the

false alarm function of δ̂(y) with respect to the scale factor

x. For this purpose, let us introduce the W -function W (̺, ϕ)
defined in [21] by

W (̺, ϕ)=

∫ ∞

ξ=0

∫ ϕ

t=0

exp

(

−̺2+ξ2+2̺ cos t

2

)

ξ

2π
dξdt (11)

for ̺ ≥ 0 and 0 ≤ ϕ ≤ π. The main properties of W (̺, ϕ)
are described in [21] and a numerical approximation to com-

pute it is proposed in [22]. Since the distribution of Λ̂(y) is

the same as the one of Λ̂(−y), it is sufficient to calculate the

false alarm function and the power function for x > 0. Let

Q(·) be the well-known Q-function defined by:

Q(u) =
1√
2π

∫ +∞

u

exp

(

− t2

2

)

dt. (12)

Proposition 1 Assume λ̂ ≥ 0 and 0 < η < π
2 . Let θ1(x) =

xh1 for x > 0. Let R = λ̂/sin(η) and

R1 = R1(x) =
√

R2 + x2 cos2(η).

Let φ such that tan(η) = 2 tan(φ) and let

φ1 = φ1(x) = arccos

(

x sinφ+R cosφ

R1

)

, (13)

φ′
1 = φ′

1(x) = arccos

(−x sinφ+R cosφ

R1

)

. (14)

The false alarm function αδ̂(x; λ̂)
def.
= Prθ1(x)(Λ̂(y) > λ̂) of

δ̂(y) at point θ1(x) is given by

αδ̂(x; λ̂) =

{

Q(R) +W1 +W ′
1 if 0 < x ≤ x̄,

Q(R)−W1 +W ′
1 if x̄ < x,

(15)

with W1=W (R1, φ1), W
′
1=W (R1, φ

′
1) and x̄=R tan(η).

It can be shown that choosing α ≤ 1
2 involves that λ̂ ≥ 0,

hence the assumption λ̂ ≥ 0 is not restrictive in practice.

The closed-form expression of the false alarm depends on

the known value x̄ since the way the false alarm probability

is calculated changes according to the value of x. The false

alarm function is continuously differentiable with respect to

x (see [19, Chapter 46]). The following corollary gives some

upper and lower bounds of the false alarm function.

Corollary 1 Assume λ̂ ≥ 0 and 0 < η < π
2 . Let θ1(x) =

xh1 for x > 0. The false alarm probability of δ̂ satisfies

Q(R) ≤ Prθ1(x)(Λ̂(y) > λ̂) ≤ Q(R) + 2W (R, φ) (16)

where R = λ̂/sin(η) and tan(η) = 2 tan(φ).

It is interesting to note that the bounds are independents of x
and it is easy to show that they are both achieved. Let λ̂α be

the conservative threshold satisfying

Q (Rα) + 2W (Rα, φ) = α (17)

with Rα = λ̂α/sin(η) and tan(η) = 2 tan(φ). According

to Corollary 1, using the threshold λ̂α guarantees that δ̂(y) ∈
Kα, i.e, it satisfies the false alarm level α whatever θ1(x).

3.3. Power Function and EMS Optimality

The following proposition calculates the power function

βδ̂(x; λ̂) of δ̂ as a function of x.

Proposition 2 Assume λ̂ ≥ 0 and 0 < η < π
2 . Let θ2(x) =

xh2 for x > 0, R = λ̂/sin(η),

R2 = R2(x) =
√

R2 + x2 − 2x sin(η)R,

R′
2 = R′

2(x) =
√

R2 + x2 + 2x sin(η)R.

Let φ such that tan(η) = 2 tan(φ) and let

φ2 = φ2(x) = arccos

(−x cos(η)

R2

)

, (18)

φ3 = φ3(x) = arccos

(

cos(φ)R − x sin(η − φ)

R2

)

, (19)

φ′
2 = φ′

2(x) = arccos

(

x cos(η)

R′
2

)

, (20)

φ′
3 = φ′

3(x) = arccos

(

cos(φ)R + x sin(η − φ)

R′
2

)

. (21)

Let Wi,j=W (Ri, φj) and W ′
i,j=W (R′

i, φ
′
j) for 2 ≤ i, j ≤ 3.

The power function βδ̂(x; λ̂) = Prθ2(x)(Λ̂(y) > λ̂) of δ̂(y)
at point θ2(x) is

βδ̂(x; λ̂)=







W2,2 +W2,3 +W ′
2,2 +W ′

2,3 if 0 < x ≤ x̄1,
W2,2 −W2,3 +W ′

2,2 +W ′
2,3 if x̄1 < x ≤ x̄2,

1−W2,2 −W2,3 +W ′
2,2 +W ′

2,3 if x̄2 < x,

where

x̄1 =
R sin(φ)

cos(η − φ)
, x̄2 =

R

sin(η)
. (22)

It is straightforward to verify that the power function

βδ̂(x; λ̂) is continuously differentiable with respect to x.

Then, the following theorem establishes that δ̂(y) is an EMS

test for testing H1 and H2 given in (1). The proof is based on

the comparison between the power function given in Propo-

sition 2 and the envelope power function (9).
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Theorem 1 Let 0 < α ≤ 1
2 and 0 < η ≤ π

2 . Then, the test

δ̂(y) is an EMS test in the class Kα for testing H1 and H2.

Deriving a closed-form upper-bound for the loss of optimal-

ity ε is difficult. Hopefully, it is very easy to compute it nu-

merically since the power function function of δ̂ is given in

Proposition 2 and the envelope power function is given in (9).

4. NUMERICAL RESULTS

Fig. 1 presents the EMS power function, given in Proposi-

tion 2, and the envelope power function, given in (9), with

respect to x for four several angles 10◦, 30◦, 50◦ and 89◦ for

α = 10−3. When the angle is small, the difference between

these two power functions, i.e., the shortcoming γδ̂,α(x), is

small. The difference increases as the angle increases but,

even for a very large angle close to 90◦, this difference re-

mains negligible for almost all x 6= 0. The loss of optimality

is quite acceptable for almost all x 6= 0. Changing the level α
does not change the results interpretation.
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Fig. 1. The power function of the EMS test and the envelope

power function with respect to x for the prescribed level α =
10−3 and the angles 10◦, 30◦, 50◦ and 89◦.

A calculation shows that the GLRT δGLRT(y) is given by:

δGLRT(y) =

{

H1 if ΛGLRT(y) =
(

h⊤2y
)2 −

(

h⊤1y
)2 ≤ λGLRT,

H2 else,

where λGLRT is the threshold (a general definition of the GLRT

is given in [19]). Fig. 2 compares the false alarm function and

the shortcoming function of the EMS test and the GLRT for

the prescribed level α = 10−2 and the angle η = 70◦. The

variable x is discretized into a finite set X of 200 equally

spaced values between 0.01 and 12. The false alarm and

shortcoming functions are computed by using a Monte-Carlo

simulation with 107 samples for each point x. To compute

the threshold of the GLRT, the decision function ΛGLRT(y) is

computed under hypothesis H1 with x fixed. The threshold

λGLRT(x) is computed to warrant that the false alarm of the

GLRT is α for the chosen value x ∈ X . Finally, λGLRT is cho-

sen as λGLRT = maxx∈X λGLRT(x). From this way, the GLRT
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Fig. 2. Comparison between the false alarm function (a) and

the shortcoming function (b) of the EMS test and the GLRT

for the prescribed level α = 10−2 and the angle η = 70◦.

belongs to Kα for testing H1 and H2 whatever the value of

x ∈ X . The threshold of the EMS test is computed as de-

scribed in (17). The statistical performances of the EMS are

computed in two different ways: 1) by using the Monte-Carlo

simulation as the GLRT does and 2) by using the theoreti-

cal formulas given in Section 3. Fig. 2.(a) clearly shows that

the false alarm function of the GLRT significantly varies with

respect to x. As established by Corollary 1, the EMS test

achieves the prescribed false alarm level for x = 0. The false

alarm function of the EMS test, which is computed by using

theoretical formulas, coincides with the false alarm function

obtained by the Monte-Carlo simulation. Fig. 2.(b) shows that

the shortcoming function of the GLRT always exceeds the

shortcoming function of the EMS test.

5. CONCLUSION

This paper deals with the discrimination of two vector lines

under a constrained false alarm probability. The proposed

EMS test minimizes, up to a small loss of optimality, the max-

imum shortcoming between its power function and the enve-

lope power function which defines an ideal maximum power

function. This test outperforms the GLRT which could be

considered as the standard suboptimal solution.
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