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ABSTRACT

Literature on multiple testing is mostly concerned with fixed sample

number testing. In this paper, we propose a sequential multiple test-

ing procedure. This work is motivated by an application in multiband

spectrum sensing for cognitive radio, in which a primary user or a

cognitive radio user can use several bands at a time. The proposed

procedure simultaneously controls the false alarm and miss detection

rate not only for a single band, but also for the system (familywise).

The common method to individually testing the hypotheses fails to

achieve this. Furthermore, simulation results show that the proposed

method has a smaller average sensing time (sample number) than

Bonferroni’s procedure, which makes it suitable for the scenario at

hand.

Index Terms— Multiple testing procedure, sequential probabil-

ity ratio tests, multiband spectrum sensing, cognitive radio.

1. INTRODUCTION

A multiple testing procedure (MTP) refers to the testing of more

than one hypothesis at a time. It is intended to solve the multiplic-

ity effect [1], by making the individual tests more conservative to

arrive at rejecting a hypothesis. Some classical MTPs such as Bon-

ferroni’s method and its extensions can be found in [1] and refer-

ences therein. The main issue in classical MTPs is the tight control

of type-I errors. Thus, they tend to have substantially less power

than individual testing procedures of the same levels, particularly

when the number of hypotheses increases. To solve this issue, Ben-

jamini and Hochberg [2] propose to control the false discovery rate

instead of the familywise error rate (see Section 3 for definitions),

which is more attractive to use in fixed sample number cases. The

implementation of an MTP to source enumeration can be found, for

example, in [3] and to the identification of optimal sensor positions

can be found in [4]. It also has been implemented in distributed de-

tections and wireless sensor networks, such as in [5–8]. In this paper,

we propose the implementation of an MTP in multiband (wideband)

spectrum sensing to jointly detect availabilities of multiple bands,

which are then to be used by cognitive radio (CR) users.

Multiband spectrum sensing is relatively less studied than sin-

gle band (narrow-band) spectrum sensing [9]. To mention a few,

multiband spectrum sensing can be found in [10–12]. The motiva-

tion behind the use of MTPs in multiband spectrum sensing is the

capability of MTPs to provide control over decision errors not only

per single band but also for the overall system. In this respect, [13]

and [14] propose to use Benjamini-Hochberg procedure [2] in multi-

band spectrum sensing. The results show a better tradeoff between

type I errors and type II errors at the system level, compared to indi-

vidual testing procedures. In all the above literature, MTPs are used

in the context of a fixed sample number. In this paper, we propose an

MTP for sequential detections, more precisely for sequential prob-

ability ratio tests (SPRT), where the sample number is random. To

the best of our knowledge, the study of MTP for the SPRT is scarce.

Note that with an MTP for the SPRT we do not mean sequential mul-

tihypothesis testing, such as in [15–17] and the like. At least, three

points mark the differences between the implementation of an MTP

in fixed sample number cases (FSN) and in the SPRT we propose

here. First, unlike FSN, the p-value [18] as the level of evidence is

difficult to get in the SPRT since the number of samples N changes.

However, we can use random stopping times (random sample num-

bers) instead. The smallest stopping time can be considered to be

equivalent to the smallest p-value. Simply said, an MTP in FSN

works based on the ordered p-values, while in the SPRT it works

based on the ordered stopping times. Second, ordering p-values in

FSN is done after all tests finished, while ordering stopping times in

the SPRT is done while the SPRTs are in progress, successively one

test after another, depending on the one that finished earlier. Third,

the main objective in MTP for FSN is to maximize the power, while

in the SPRT context, the aim is to minimize the average sample num-

ber.

2. SYSTEMMODEL

We assume that the primary network operates over a wide frequency

bandwidth which is divided into K nonoverlapping subbands, such

as in multicarrier-based system. Whenever possible, a primary user

can be assigned to use a number of subbands Kp simultaneously,

where 1 ≤ Kp ≤ K. The binary hypothesis testing problem for

spectrum sensing of the subband k is

Hk,0 : fk,0(xk[n];θk,0)

Hk,1 : fk,1(xk[n];θk,1), k = 1, . . . ,K. (1)

where xk[n] denotes a scalar or a vector observation, and fk,i(·) is

the density function of the subband k under hypothesisHi, i = 0, 1.

θk,0 and θk,1 are the parameters for the subband k which could be

scalars or vectors, under the respective hypotheses. Here, we assume

that the observations are identically independent distributed (i.i.d.)

within subbands and also independent accross subbands. Suppose

that within a particular time interval, K0 out of K subbands might

not be used by the primary users and are available for cognitive ac-

cess. Let us assume that the CR network supports some CR users

to use several unoccupied subbands simultaneously. The number of

subbands Kc, 1 ≤ Kc ≤ K0, assigned to a specific CR user is,

say, based on priority and currently active CR users. To accommo-

date the use of multiple subbands by the primary and the CR users,

we need an overall view for the performance of spectrum sensing,

e.g., false alarm and miss detection not only per subband, but for

1 ≤ Kc ≤ K0 and 1 ≤ Kp ≤ (K −K0), respectively. Note that
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K0 could span from 0 (all subbands occupied) to K (all subbands

unoccupied).

For the sake of clarity, we give an illustration. Suppose that

each subband is individually tested with nominal probabilities of

false alarm αk = α and miss detection βk = β, k = 1, . . . ,K.
Let us assume that there are K0 = 5 unoccupied subbands and two

active CR users, that is one with high priority (can use 1 ≤ Kc ≤ 4
subbands) and the other with low priority (Kc = 1). The low pri-

ority user could have a subband to use, while the high priority user

might defer to use all four unoccupied subbands simultaneously, and

thus uses lower Kc, due to the higher false alarm rate caused by

the multiplicity effect (the actual probability of false alarm for the

four subbands = 1 − (1 − α)4). With the same argument, any pri-

mary user that uses a higher number of subbands Kp simultaneously

will experience a higher aggregate interference level due to a higher

probability of miss detection. In this case, an MTP should be imple-

mented in multiband spectrum sensing to jointly detect the subbands

and hence to provide control on the decision errors at the system

level.

3. PERFORMANCE MEASURES

Referring to Table 1, the so-called familywise error rate is defined

as the probability of committing any type I error or false alarm in

families of comparisons, formally

FWE = P0(V ≥ 1), (2)

where P0(·) represents the probability of an event under H0, which

could be complete null hypotheses (all H0,k are true) or partial null

hypotheses (some subsets of nulls, say H0,j1, . . . ,H0,jk, are true).

An MTP is said to control the FWE in the weak sense if FWE ≤
α only under complete null hypotheses and in the strong sense if

FWE ≤ α under partial null hypotheses, regardless of which subsets

of null hypotheses is true [19], including complete null hypotheses.

Here, we define familywise miss detection (FWM). It refers to the

probability of committing any type II error or miss detection in fam-

ilies of comparisons, formally

FWM = P1(T ≥ 1), (3)

which also could be under complete or partial alternative hypothe-

ses. In addition, since we do sequential detection, other important

measures are the average sample number over all subbands that are

under H0, denoted as ASN0, and over all subbands that are under

H1, denoted as ASN1. They are defined formally as

ASN0 = E0

[

∑K0

i=1 Ns,i

K0

]

, ASN1 = E1

[

∑K−K0

l=1 Ns,l

K −K0

]

, (4)

where Ns,i denotes the stopping time of the subband Si. Note that

a false discovery rate (FDR = E [V/R]) [2] controlling procedure

is now commonly used in the fixed sample number case. This is

because FDR controlling tests are more powerful than those control-

ling the FWE. However, the use of the FDR in MTP for the SPRT is

unclear due to the capability of the SPRT to simultaneously control

the probabilities of false alarm and miss detection.

4. MTP FOR THE SPRT

Let xk,N = (xk[1] xk[2] · · · xk[N ]) be a sequence of i.i.d. obser-

vations of a signal recorded up to the sample N at subband Sk. Here,

Table 1. Number of correct and false decisions for testing K sub-

bands
DeclaredH0 DeclaredH1 Total

TrueH0 U V K0

TrueH1 T S K −K0

K −R R K

xk[n] is assumed to admit the distribution described by the density

function in (1) under each hypothesis. The sequential probability

ratio test (SPRT) can then be defined as

Zk,N =







≥ A, acceptHk,1

≤ B, acceptHk,0,
A < Zk,N < B, N ← N + 1.

(5)

where Zk,N =
∑N

n=1 log
fk,1(xk[n];θk,1)

fk,0(xk[n];θk,0)
, k = 1, 2, . . . ,K. For

the implementation, we use the thresholds [20]

A ≈ log
1

α′
, B ≈ log β′, (6)

to have the actual probabilities of false alarm Pf,k ≤ α′ and miss

detection Pm,k ≤ β′ of the subband Sk, where α′ and β′ denote the

respective nominal values of the probabilities of false alarm and miss

detection per subband [21]. Note that we use the same thresholds for

all subbands. We further assume that the SPRTs start simultaneously

at all K subbands whenever the sensing period starts, and the SPRT

running in each subband fulfills the condition of having a finite ran-

dom stopping time Ns,k, k = 1, . . . ,K [22]. The objective is to

have

FWE ≤ α, FWM ≤ β, (7)

with ASN0 and ASN1 as small as possible, by jointly testing all K
subbands.

Simple Bonferroni procedure (SBF) for the SPRT. For K hy-

potheses (subbands), the simplest way of conducting an MTP is to

follow the simple Bonferroni procedure [19], like in the fixed sample

number case. More precisely, we test each subband individually at

the level αk = α/K and βk = β/K, ∀k ∈ {1, . . . ,K} and set the

thresholds accordingly using (6). Thus, it will guarantee to fulfill the

sensing objective (7). However, this approach is too conservative

in protecting decision errors and hence it results in large ASN0 and

ASN1 for the SPRT. To solve this issue, we propose a stepwise

procedure that will be elaborated in the sequel.

Stepwise procedure (SWP) for the SPRT. Inspired by the work

of Holm [23] that uses the ordered p-values for the fixed sam-

ple number case, the SWP is based on the ordered stopping times

Ns,(1) ≤ Ns,(2) ≤ · · · ≤ Ns,(K) corresponding to subbands

S(1), S(2), . . . , S(K). The procedure in the SPRT is more involved

since we have two thresholds to consider and we perform ordering

while the sample number N is increasing. In principle, we start the

SPRT in each subband with the largest value of the threshold A and

the lowest value of the threshold B. The largest A and the lowest B
depend on the nominal values of FWE and FWM and the number

of subbands K. Whenever one or more SPRTs stop and favor H1

(the subbands are declared occupied), update A with a smaller value

to conduct the SPRT at the other subbands, and simultaneously,

whenever one or more SPRTs stop and favor H0 (the subbands are

declared unoccupied), update B with a larger value to conduct the
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SPRT at the other subbands. In addition, after any SPRT stops we

proceed with a procedure to find the other SPRTs that probably have

crossed the respective smaller value of A or larger value of B in the

past. If any, declare the respective subbands as occupied or unoccu-

pied and repeat the procedure with the next smaller A or larger B.

Otherwise, the SPRTs proceed for the rest of subbands. The whole

process continues until all subbands have been declared as occupied

or unoccupied.

Suppose that the nominal values of the FWE and FWM are α
and β, respectively. The detail of the SWP is as follows:

Step 1). Initialize the sample number N = 0, variables I1 = 0 and

I0 = 0, and a set of terminated subbands ST = ∅. Two sets of

thresholds

ΛA ={log(1/α), log(2/α), . . . , log((K − I1)/α)}

ΛB ={log(β), log(β/2), . . . , log(β/(K − I0))}, (8)

correspond to the FWE and FWM of Benferroni’s method for the

number of subbands 1, 2, . . . ,K. The size of the sets ΛA and ΛB

will be shrinking while in progress, which depends on the variables

I1 and I0. I1 indicates the number of subbands which have been

declared occupied and I0 indicates the number of subbands which

have been declared unoccupied.

Step 2). For all subbands Sk /∈ ST , take a sample N ← N + 1,

calculate and then compare Zk,N according to (5) where A =
max {λA : λA ∈ ΛA} and B = min {λB : λB ∈ ΛB}. If one of

the two thresholds is crossed at any subband, continue to Step 3,

otherwise repeat Step 2. Note that, at each stage N , Zk,N is also in-

spected by the processor in the subband k for whether it has crossed

the upper thresholds {log(1/α), . . . , log((K − I1 − 1)/α)} or the

lower thresholds {log(β), . . . , log(β/(K−I0−1))}. The results are

stored, say, in a memory uk =
[

uk,1, uk,2, . . . , uk,(K−1)

]

, where

uk,l is set to 1 if Zk,N ≥ log(l/α) or set to 0 if Zk,N ≤ log(β/l),
otherwise keep uk,l empty.

Step 3). If the SPRTs in a subset of subbands S1 = {S(1), . . . , S(L1)}
stop, due to the respective Z(k),N ≥ A, the subbands S(1), . . . , S(L1)

are declared occupied, and the variable I1 ← I1 + L1 is up-

dated. Simultaneously, if the SPRTs in a subset of subbands

S0 = {S1∗ , . . . , SL∗

0
}, where S0 ∩ S1 = ∅, stop, due to the

respective Zk∗,N ≤ B, the subbands S1∗ , . . . , SL∗

0
are declared un-

occupied, and the variable I0 ← I0 + L0 is updated. The set of ter-

minated subbands should also be updated, i.e., ST = {ST , S1, S0}.
1

If not all subbands have been declared occupied or unoccupied, the

decisions for the rest of the subbands depend on the results of the

following procedure, which inspects the memory uk, ∀Sk /∈ ST .

Initially, set index variables i0 = 1 and i1 = 1,

(a) If none of Sk /∈ ST having uk,(K−I1−i1) = 1 or uk,(K−I1−i1) =
0, update the sets ΛA and ΛB in (8) and repeat Step 2.

(b) Otherwise, if uk,(K−I1−i1) = 1 in a subset of subbands

S
′

1 = {S1′ , . . . , Sl′
1
}, the subbands S1′ , . . . , Sl′

1
are de-

clared occupied, update the variable i1 ← i1 + l1. Si-

multaneously, if uk,(K−I1−i0) = 0 in a subset of subbands

1Note that the possibility to have the total number of terminations L1 +

L0 > 1 is small when the SNRs (more precisely, the increments [24]) are
small, since under this condition, the variance of the stopping time at each
subband is large and thus the SPRTs most likely will not stop at the same
time (either S0 or S1 is mostly an empty set). However, when the SNRs
are high, the possibility is larger, since the variance of stopping time in each
subband is small.

S
′

0 = {S′

1∗ , . . . , S
′

l
0∗
} where S

′

0 ∩ S
′

1 = ∅, the subbands

S′

1∗ , . . . , S
′

l∗
0

are declared unoccupied, and then update the vari-

able i0 ← i0 + l0. The set of terminated subbands should also

be updated, i.e., ST = {ST ,S
′

1,S
′

0}. As long as S′

0 ∪ S
′

1 6= ∅,
continue from the beginning of (b). Otherwise, if not all sub-

bands have been declared occupied or unoccupied, update the

variables I1 ← I1+i1−1 and I0 ← I0+i0−1 and accordingly

the sets ΛA and ΛB in (8), then repeat Step 2.

Note that we only update the upper threshold A (not A and B)

whenever one or more SPRTs stop and favor H1. The same holds

for the opposite, when favoring H0. This can be explained as fol-

lows. Suppose that an SPRT at the subband Sk stops and favors

Hk,1 with the thresholds A = log(K/α) and B = log(β/K). In

this case, when Hk,0 has been rejected, using the nominal value of

the probability of false alarm α′ = α/K (A = log(K/α)), we

should believe that Hk,0 is false (Hk,1 is true). Therefore, there

are only K − 1 null hypotheses which might be still true, imply-

ing the critical value now to be α′ = α/(K − 1) (update the upper

threshold to A = log((K − 1)/α)). However, for the lower thresh-

old B, we should believe that there are still K alternative hypotheses

which might be true (including the one that has been declared), since

we have no evidence that any of Hk,1 has been rejected. This im-

plies the nominal value for the probability of miss detection is still

β′ = β/K (the lower threshold is maintained at B = log(β/K)).
The same argument applies when an SPRT at the subband Sk stops

and favors Hk,0. If we were to update both thresholds each time

an SPRT stops, regardless of which hypothesis is rejected, then the

objective (7) will not be achieved.

5. EXAMPLE

As an example, we assume that a CR user receives complex Gaussian

signals in each subband, i.e

Hk,0 : xk[n] ∼ CN
(

0, σ2
k,0

)

,

Hk,1 : xk[n] ∼ CN
(

0, σ2
k,1

)

, k = 1, 2, . . . ,K. (9)

The log-likelihood ratio Zk,N can then be calculated from (5) to

perform spectrum sensing in K subbands. For all simulations we

assume that the noise power σ2
k,0 = 1, k = 1, . . . ,K, where σ2

k,1

depends on the SNR at each subband, which is defined as SNRk =
10 log10((σ

2
k,1 − σ2

k,0)/σ
2
k,0). The nominal values of the FWE and

FWM are set to α = β = 0.1. All the results are generated using

104 Monte Carlo runs.

Fig. 1 shows the resulting FWE and FWM for the SBF and the

SWP. The number of subbands that are jointly tested is K = 8 and

the number of unoccupied subbands K0 varies from 0 to 8. Note that

K0 unoccupied subbands were randomly selected from the K sub-

bands in each Monte Carlo run. Here, the occupied subbands have

the same SNR= −10 dB. The results when all subbands are indi-

vidually tested without MTP at the nominal values α′ = β′ = 0.1,

are also shown. In general, Fig. 1 indicates that the SBF and SWP

control the FWE and the FWM in the strong sense. More precisely,

regardless of how many available subbands might be opportunisti-

cally used by a CR user, the probability of losing opportunity to use

the respective subbands is no larger than α = 0.1, and regardless

of how many subbands are used by a primary user, the probability

of the respective primary user to receive interferences is no larger

than β = 0.1. However, full protection resulting from the SBF is

too restrictive, particularly for the FWE when K0 is large and for

the FWM when K0 is small. Meanwhile, lack of multiplicity con-

trol by testing individually is too permissive, and hence reducing the
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Fig. 1. FWE and FWM vs. K0 for individually tested without MTP

(Indv), the SBF, and the proposed SWP.

Table 2. ASN0 and ASN1 for the SBF and the SWP as a function of

K0.

K0

0 2 4 6 8

ASN0
SBF - 980 977 977 978

SWP - 928 910 861 779

ASN1
SBF 934 935 934 932 -

SWP 743 820 864 888 -

overall throughput of the CR network (due to higher FWE for higher

numbers of unoccupied subbands) and increasing the interferences

to the primary users (due to higher FWM for higher number of oc-

cupied subbands), especially for the primary users that use several

subbands at a time. The proposed procedure SWP handles the prob-

lem appropriately. It pulls the FWE and the FWM closer to the nom-

inal values while still preserving the objective (7). As a result, the

SWP has smaller average sample numbers than the SBF, as shown

in Table 2. By using the SWP, the gain that we obtain on the ASN1

is larger when the subbands are busier (mostly occupied), and the

gain is larger for the ASN0 when the subbands are sparser (mostly

unoccupied).

According to (4), the ASN0 and ASN1 represent the average

sample numbers per subband. The total average sample number can

be defined as

ASNT =E

[

K
∑

i=1

Ns,i

]

= E





K0
∑

i=1

Ns,i +

(K−K0)
∗

∑

l=1∗

Ns,l





≈K {(1− P1)ASN0 + P1ASN1} , (10)

where we have assumed that the probability of each subband being

occupied by a primary user is equal, i.e., P (Hk,1) = P1, k =
1, . . . ,K. In Fig. 2, we plot the gap ∆T = ASNT (SBF) −
ASNT (SWP), between the total ASN of the SBF and the SWP

against the number of subbands K, in which the occupied subbands

have the same SNR= −10 dB. We evaluate the performance when

the channel occupancy is considered to be busy (P1 = 0.8), mildly

busy (P1 = 0.5) and sparse (P1 = 0.2). It can be remarked that

the gap is larger when either K subbands are busy or sparse. The

2 4 8 16 32
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K

∆
T

 

 

Sparse (P
1
=0.2)

Mild (P
1
=0.5)

Busy (P
1
=0.8)

Fig. 2. The gap ∆T between the total ASN of the SBF and the SWP

vs. K, when the subbands occupancies are busy, mild and sparse.

reasoning is as follows. When the subbands are busy, the alternative

hypotheses dominate the MTP. In this case, the probability of the

SWP updating the upper threshold A down to the lowest value in

each realization is high, and hence the probability of SPRTs stop

with smaller sample numbers is also high. The same case applies

when the subbands are sparse, namely the null hypotheses dominate

the MTP. In this case, the probability of the SWP updating the lower

threshold B up to the largest value in each realization is high, and

hence the probability of SPRTs to stop with smaller sample numbers

is also high. However, this does not apply when the occupancies of

the subbands are mild since, then, the null hypotheses and the alter-

native hypotheses are competing. In this case, all SPRTs will mostly

have stopped immediately after reaching the [K/2] smallest of the

thresholds A and the [K/2] largest of the thresholds B. Therefore,

the average sample number of the SWP of mildly occupied subbands

is higher than that of busy and sparse subbands. This explains the

smaller gap when the occupancies of subbands are mild.

It is noteworthy that in this paper we present our preliminary

results on MTP for sequential testing that are based on a heuristic

approach. An analytical approach such as using optimization theory

is possible. From our perspective, some questions are still open. It

includes, for example, what is the optimum way to conduct MTP in

the SPRT? What is the role of FDR and some other measures in MTP

for sequential testing? Is it possible to use these measures to further

reduce the sample number and if so, how? The analytical approach

and answering these questions will be the challenges in our future

works on MTP for sequential testing.

6. CONCLUSIONS

The paper presents the implementation of multiple testing procedure

in sequential probability ratio tests. The results show that the pro-

posed method fulfills the objective to have control over the deci-

sion errors at the system level which is required in a scenario where

the primary and the cognitive radio networks provide their users ac-

cesses to several bands at a time. The total ASN of the proposed

method is significantly smaller than that of the simple Bonferroni

procedure. Therefore, the proposed method is a promising technique

to increase the overall throughput of cognitive radio networks with-

out making harmful interferences to the primary networks.
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[3] P.J. Chung, J.F. Böhme, C.F. Mecklenbrauker, and A.O. Hero,

“Detection of the number of signals using the benjamini-

hochberg procedure,” IEEE Transactions on Signal Process-

ing, vol. 55, no. 6, pp. 2497–2508, 2007.
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