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Fig. 1: A camera network where each camera captures an image of the environment
from one viewpoint and encodes the image into a vector output. The aggregated
outputs from all cameras form the high-dimensional vector, x. Cameras i and j have
overlapping views. Since outputs from cameras with overlapping views tend to be
correlated, so does the aggregated vector x.

ABSTRACT
Here, we propose the vector Sparse Matrix Transform
(SMT), a novel decorrelating transform suitable for per-
forming distributed processing of high dimensional signals
in sensor networks. We assume that each sensor in the
network encodes its measurements into vector outputs in-
stead of scalar ones. The proposed transform decorrelates
a sequence of pairs of vector sensor outputs, until these
vectors are decorrelated. In our experiments, we simulate
distributed anomaly detection by a camera network moni-
toring a spatial region. Each camera records an image of
the monitored environment from its particular viewpoint
and outputs a vector encoding the image. Results show that
the vector SMT effectively decorrelates images from the
multiple cameras in the network and significantly improves
anomaly detection accuracy while requiring low overall
communication energy.

1. INTRODUCTION
Event detection and more specifically anomaly detection
are important applications for many sensor networks [1].
In general, the vector outputs from all sensors in a network
can be concatenated to form a single p-dimensional vector
x, and then the goal of anomaly detection is to determine
if x corresponds to a typical or anomalous event. Fig. 1
illustrates this scenario for a camera network. The vector
outputs from different cameras are likely to be correlated,
particularly when the cameras capture overlapping portions
of the scene; so for best detection accuracy, vector x should
be decorrelated as part of the detection process.

Several methods for distributed decorrelation and de-
tection have been proposed since the 1980s. Traditionally,
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distributed detection methods rely on a centralized fusion
center for data processing [2]. Volume anomaly detection in
networks has been studied for scalar measurements [3, 4],
and multi-view images [5], with offline, centralized pro-
cessing methods for detection decision. Ortega et. al. pro-
posed methods for distributed decorrelation of scalar sensor
outputs using wavelet transforms with lifting for efficient
routing in networks of various topologies [6, 7, 8]. Methods
to compute distributed PCA for scalar sensor outputs were
proposed in [9, 10]. A distributed KLT algorithm [11, 12]
is used to encode vector sensor outputs to resconstruct them
at a central location with minimum mean-square error.

In order to decorrelate x, we need an accurate estimate
of its covariance matrix. Several methods to estimate co-
variances of high-dimensional signals have been proposed
recently [13, 14, 15, 16, 17, 18]. Among these methods, the
Sparse Matrix Transform (SMT) [17], here referred to as
the scalar SMT, has been shown to be effective, providing
full-rank covariance estimates of high-dimensional signals
even when the number n of training samples used to com-
pute the estimates is much smaller than the dimension p of
a data sample, i.e, n ≪ p. Furthermore, the decorrelating
transform designed by the SMT algorithm consists of the
product of planar rotations known as Givens rotations,

E =

K∏

k=1

Ek = E1 · · ·EK . (1)

Each Ek rotates the coordinates (ik, jk) of x by an angle
θk. Because normally K = O(p), this transform is compu-
tationally inexpensive to apply. The scalar SMT has been
used in detection and classification of high-dimensional
signals [19, 20] and Givens rotations have been used in
ICA [21]. Since it involves only pairwise operations be-
tween coordinate pairs, it is well-suited to distributed decor-
relation [22]. However, this existing method is only well
suited for decorrelation of scalar sensor outputs.

In this paper, we propose the vector sparse matrix trans-
form (vector SMT), a novel algorithm suited for distributed
signal decorrelation in sensor networks where each sensor
outputs a vector. It generalizes the concept of the scalar
sparse matrix transform in [17] to decorrelation of vectors.
This novel algorithm operates on pairs of sensor outputs,
and it has the interpretation of maximizing the constrained
log likelihood of x. In particular, the vector SMT decor-
relating transform is defined as an orthonormal transfor-
mation constrained to be formed by a product of pairwise
transforms between pairs of vector sensor outputs. We de-
sign this transform using a greedy optimization of the like-
lihood function of x. Once this transform is designed, the
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associated pairwise transforms are applied to sensor outputs
distributed over the network, without the need of a powerful
central sink node. The total number of pairwise transforms
is a model order parameter, which can be adjusted to con-
trol the total amount of communication energy used during
the decorrelation.

Simulation results using multi-camera image data show
that the proposed vector SMT transform effectively decor-
relates image measurements from the multiple cameras in
the network while maintaining low overall communication
energy consumption. Since it enables joint processing of
the multiple vector outputs, our method provides significant
improvements to anomaly detection accuracy when com-
pared to the baseline case when the images are processed
independently.

2. DISTRIBUTED DECORRELATION WITH THE
VECTOR SPARSE MATRIX TRANSFORM

Our goal is to decorrelate the p-dimensional vector x ag-
gregated from outputs of all sensors, where each of the L
sensors outputs an h-dimensional sub-vector of x.

2.1. The Vector SMT Model
Let the p-dimensional vector x be partitioned into L sub-
vectors,

x =



x(1)

...

x(L)


 ,

where each sub-vector, x(i) is an h-dimensional output
from a sensor i = 1, · · · , L in a network. The decorrelating
vector SMT transform is an orthonormal p×p transform, T ,
written as the product of M orthonormal, sparse matrices,

T =

M∏

m=1

Tm , (2)

where each pairwise transform, Tm ∈ R
p×p, is a block-

wise sparse, orthonormal matrix that operates exclusively
on the 2h-dimensional subspace of the sub-vector pair

x(im), x(jm), and M is a model order parameter.
The vector SMT in (2) generalizes the concept of the

scalar SMT [17] to the decorrelation of pairs of vectors.
Figs. 2 compares the vector and the scalar SMTs ap-
proaches graphically, together with the FFT. In the vector
SMT, each orthonormal matrix Tm corresponds to series of
decorrelating butterflies that operate exclusively on coordi-
nates of a single pair of sub-vectors of x.

In a sensor network, we compute the distributed decor-
relation of x by distributing the application of transforms
Tm from the product (2) across multiple sensors. Before

the decorrelation, each sub-vector x(i) of x is the output
of a sensor i and is stored locally in that sensor. Apply-

ing each Tm to sub-vectors x(im), x(jm) requires energy
for a point-to-point communication of one h-dimensional
sub-vector between sensors im and jm. The resulting sub-
vectors are cached at the sensor that performed the decorre-
lation to avoid extra communication.

2.2. The Design of the Vector SMT
We design the transform in (2) from training data, using
the maximum likelihood estimation of its covariance ma-
trix. Let X = [x1, · · · , xn] ∈ R

p×n, be a p × n ma-
trix where each column, xi is a p-dimensional zero mean
Gaussian random vector with covariance R. In general,
R = TΛT t, where Λ and T are the diagonal eigenvalue
and orthonormal matrices, respectively. In this case, the log
likelihood of X given T and Λ is

log p(T,Λ)(X) = −
n

2
tr[diag(T tST )Λ−1]−

n

2
log(2π)p|Λ| ,

(3)
where S = 1

nXXt . The functions diag(·) and |·| are the di-
agonal and determinant, respectively, of a matrix argument.
When constraining T to be of the product form of (2), the

joint maximum likelihood estimates Λ̂ and T̂ are given by

T̂ =arg min
T=

∏
M

m=1
Tm

{∣∣diag(T tST )
∣∣} (4)

Λ̂=diag(T̂ tST̂ ) . (5)

Since the minimization in (4) has a non-convex constraint,
its global minimizer is difficult to find. Therefore, we use
a greedy procedure that designs each Tm, m = 1, · · · ,M ,
independently while keeping the others fixed. We start with
S1 = S and X1 = X , and iterate over the following steps:

T̂m=arg min
Tm∈Ω

{∣∣diag(T t
mSmTm)

∣∣} (6)

Sm+1= T̂ t
mSmT̂m (7)

Xm+1= T̂ t
mXm , (8)

where Ω is the set of all allowed pairwise transforms. Since

Tm operates exclusively on x(im) and x(jm), once the pair
(im, jm) is selected, the design of Tm involves only the
components of Xm associated with these sub-vectors and

their associated 2h× 2h sample covariance, S
(im,jm)
m . The

minimization in (6) for a fixed subvector pair (im, jm) can

be recast in terms of S
(im,jm)
m , and the 2h×2h orthonormal

matrix E,

Em = arg min
E∈Ω2h×2h

{
|diag(EtS(im,jm)

m E)|
}

, (9)

where Ω2h×2h is the set of all valid 2h × 2h orthonormal
transforms. In practice, the minimization in (9) is precisely
the scalar SMT design in [17]. Once Em is selected, it is
directly mapped into the p× p block sparse matrix Tm. Fi-
nally, the overall change in the log likelihood in (3) due to

applying Tm to Xm and maximized with respect to Λ̂(Tm)
is given by

∆log p(Tm,Λ̂(Tm))(Xm)=−
n

2
log

|diag(T t
mSmTm)|

|diag(Sm)|
(10)

=−
n

2
log

|diag(Et
mS

(im,jm)
m Em)|

|diag(S
(im,jm)
m )|

.

Therefore, we use the maximum value of (10) as the crite-

rion for selecting the pair (im, jm) during the design of T̂m

in (6).
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Fig. 2: (a) scalar SMT decorrelation, x̃ = Etx. Each Ek plays the role of a decorrelating “butterfly”, operating on a single pair of coordinates. (b) 8-point FFT, seen

as a particular case of the scalar SMT where the butterflies are constrained in their ordering and rotation angles. (c) Vector SMT decorrelation, x̃ = T tx, with each Tm

decorrelating a sub-vector pair of x instead of a single coordinate pair. Tm is an instance of the scalar SMT with decorrelating butterflies operating only on coordinates of a
single pair of sub-vectors.

3. ANOMALY DETECTION

Let x̃ = T̂ tx be a p-dimensional vector decorrelated using

the orthonormal transform T̂ in (4). As discussed in [23],
for a given probability of false alarm, the optimal anomaly
detection test is

D̃Λ̂(x̃) = ||x̃||2
Λ̂
=

p∑

i=1

x̃2
i

λ̂i

> η2 , (11)

where η controls the probability of false alarm and Λ̂ is
the eigenvalue matrix in (5). In addition to using ROC
curves, we evaluate detection accuracy of the test in (11)
by computing the volume of the ellipsoid within the region
||x̃||2

Λ̂
≤ η2. This ellipsoid volume [24] is evaluated by

V (Λ̂, η) =
πp/2

Γ(1 + p/2)
ηp
√

|Λ̂| , (12)

and serves as a direct measure of the probability of missed
detection of (11) for a fixed probability of false alarm.

4. SIMULATIONS

We provide anomaly detection simulation results with
multi-view camera data to quantify the effectiveness of
our method. We assume communications occur between
sensors connected in a network with binary tree topology,
and that communication of one scalar value between ad-
jacent sensors uses one unit of energy. Fig. 3 compares
the vector SMT decorrelation with two other approaches
for processing the sensor outputs before making a detec-
tion decision, a centralized and an independent one. In the
centralized approach, all sensors send their h-dimensional
vector outputs to the root of the tree. We then use the scalar
SMT [17] to decorrelate x at the root. In the independent
approach no decorrelation of outputs is performed, each
sensor computes a partial likelihood of its output indepen-
dently and communicates it to the root of the tree.

Fig. 4 shows L = 8 simultaneous camera views of
a courtyard, constructed from a 4.2 min video sequence
from [25]. We subsample 1 in 3 frames from this sequence,
and use 800 of the selected samples to compute the encod-
ing PCA transforms for each camera view. The final court-
yard dataset has 1734 samples of p = 160 dimensions, with
each view encoded in a vector of h = 20 dimensions.

Method Algorithm Communication Decorrelation
Vector SMT Vector SMT Between pairs of sub-vector pairs
(distributed) nodes / caching in network
Centralized Scalar SMT Vector outputs to coordinate pairs

centralized node at single node
Independent None Partial likelihoods –

to centralized node

Fig. 3: Summary of the several approaches to sensor output decorrelation compared
and their main properties.
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Fig. 6: Detection accuracy measured by the ellipsoid log-volume for the courtyard
data set. Coverage plots showing the log-volume vs. probability of false alarm: (a)
model order, M = 4, matching 50% of the energy consumed for the centralized
processing; (b) log-volume vs. communication energy for fixed probability of false
alarm, PFA = 0.008. The vector SMT has similar accuracy to the centralized
approach while requiring 50% of its communication energy.

Fig. 5 shows two eigen-images associated with the
two largest eigenvalues for both the independent and vec-
tor SMT approaches. In the independent processing case
(Fig. 5(a)), each eigen-image corresponds to a single cam-
era view, containing no information regarding the relation-
ship between different views. On the other hand, the vector
SMT eigen-images (Fig. 5(b)) contain joint information of
the correlated views. Since camera view 8 is not correlated
with any other view, it does not appear together with others
in the same eigen-image.

Fig. 6 compares the accuracy of all approaches using
the volume of the ellipsoid covering test samples. We split
the samples into a training set, with 300 samples, and a test
set, with 1434 samples. Fig. 6(a) shows the ellipsoid log-
volume computed for all false alarm rates. We select the
vector SMT model order so that the distributed decorrela-
tion consumes only 50% of the energy required for the cen-
tralized approach. Fig. 6(b) shows the ellipsoid log-volume
for a fixed false alarm rate (0.8%) vs. communication en-
ergy. The independent approach has low accuracy while re-
quiring low communication energy. The centralized decor-
relation is highly accurate, but it requires large amounts of
communication energy. The vector SMT increases the de-
tection accuracy after each pairwise transform.

Fig. 7 shows ROC curves for detection of anomalous
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Fig. 4: The courtyard dataset [25]: eight cameras, with ids 1 to 8 from left to right, monitor a courtyard from different viewpoints. Several activities in the courtyard are captured
simultaneously by several cameras.

(a) (b)

Fig. 5: Two eigen-images from the eight camera views of the courtyard dataset. Each eigen-image has eight views (columns) associated to it. (a) independent processing of
camera views: each eigen-image corresponds to a single view and does not contain correlation information among multiple views; (b) joint processing modeled by the vector
SMT: each eigen-image contains joint information of all correlated views.
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Fig. 7: ROC analysis of detection accuracy: (a) and (b) artificially generated anoma-
lies by a 4-fold increase in the largest eigenvalue of a single view for views 2 and 8,
respectively. (c) and (d) Ocean’s Eleven anomalies, generated by swapping images
of a single camera view between samples for views 2 and 8, respectively. Decorrela-
tion improves detection accuracy when anomalies appear in correlated camera view..
When the anomaly is inserted in a uncorrelative view, decorrelation methods do not
improve the detection accuracy.

samples. We use 200 typical samples to learn the decor-
relating transform and the remaining samples for testing.
Figs. 7(a) and (b) show the results for anomalies gener-
ated by an artificial 4-fold increase in the largest compo-
nent of the vector output of a single camera view, and in-
jected in views 2 and 8, respectively. Figs. 7(c) and (d)
show the results for what we call the “Ocean’s Eleven”
anomaly, injected into the camera views 2 and 8, respec-
tively. This anomaly is generated by swapping images of a
single view between two samples captured at different in-

stants.1 Since view 2 is correlated with other views, de-
tection of anomalies in these views is accurate when we
decorrelate the views using the vector and scalar SMT ap-
proaches, and very inaccurate when we process the views
independently. Because view 8 is uncorrelated with other
views, decorrelation does not improve accuracy in this case.

Fig. 8 shows the ROC curves for detection of a suspi-
cious (anomalous) activity where people coalesce in at the

1We refer to it as the Ocean’s Eleven anomaly because of the resem-
blance with the anomaly created to trick the surveillance cameras during
the casino robbery in the Ocean’s Eleven film [26].

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

P
FA

P
D

 

 

Independent Proc.
Dist. Proc. (vector SMT)
Centr. Proc. (scalar SMT)

Fig. 8: People coalescing in the middle of a courtyard: scalar and vector SMTs are
highly accurate for small probabilities of false alarm with vector SMT consuming
approximately 60% of communication energy required for the scalar SMT.

center of the courtyard. We select 200 samples where a
group of people coalesces at the center of the courtyard and
label them as anomalous, while selecting another 200 sam-
ples where the group does not coalesce and label them as
typical. We use another 300 typical samples to train the
vector SMT. The vector SMT decorrelation in this experi-
ment consumes 60% of the communication energy required
for the scalar SMT. Detection is very accurate when using
vector and scalar SMTs for view decorrelation, and inaccu-
rate when processing the views independently, specially for
low probabilities of false alarm.

5. CONCLUSIONS
We have proposed a novel method for decorrelation of vec-
tor measurements distributed across sensor networks. The
new method is based on the constrained maximum like-
lihood estimation of the joint covariance of the measure-
ments. It generalizes the concept of the previously proposed
sparse matrix transform to the decorrelation of vectors. We
have demonstrated its effectiveness in anomaly detection
experiments using multi-view image data. In future work,
we will provide a distributed algorithm for the design of the
vector SMT decorrelating transform.
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