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ABSTRACT

In traditional sparse recovery problems, the goal is to identify

the support of compressible signals using a small number of

measurements. In contrast, in this paper the problem of iden-

tification of a sparse number of statistical changes in stochas-

tic phenomena is considered. This framework, which is newly

introduced herein, is termed Compressed Change Detection.

In particular, given a large number N of features, the goal

is to detect a small set of features that undergoes a statistical

change using a small number of measurements. The main ap-

proach relies on integrating ideas from the theory of identify-

ing codes with change point detection in sequential analysis.

If the stochastic properties of certain features change, then

the changes can be detected by examining the covering set

of an identifying code. Sufficient conditions are derived for

the probability of detection to approach 1 in the asymptotic

regime where N is large. Several applications and general-

izations of the proposed framework are presented.

Index Terms— Identifying codes, Change detection,

Sparsity.

1. INTRODUCTION

Physical and natural processes often exhibit variability over

several dimensions such as space and time. It may be cru-

cial to detect and localize changes as soon as they occur. For

example, structural health monitoring (SHM) systems are in-

tended to quickly detect structural changes and damage in

the civil infrastructure for the safety assessment of the mon-

itored structures [1]. Similarly, in surveillance applications

it is important to recognize anomalous interactions in social

processes for security purposes [2].

Our work is motivated by two observations. First, the sta-

tistical changes in stochastic phenomena are typically sparse.

Second, the effect of change is often localized, for example

in the spatial domain in SHM and within neighbors on social

network graphs. While traditional sparse signal processing

is concerned with the recovery and/or reconstruction of the

support of sparse signals, the focus here is on the recovery of

sparse statistical changes. Since leveraging sparsity can gen-

erally lead to significant reductions in the sampling rates and
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the storage requirements of modern algorithms and technolo-

gies dealing with multi-dimensional compressible signals, the

question is whether similar gains can be achieved when the

sparsity is associated with the change process, and how such

gains can be achieved.

Contrast to Prior Work: Classical change point detec-

tion has been used to identify changes in the distributions of

stochastic processes and time series [3]. A dominant stream

of research in this area has been focused on the design of ef-

ficient change detection rules with favorable delay and false

alarm tradeoffs [4, 5]. A large number of algorithms, includ-

ing CUSUM, MPCA have been proposed to minimize the de-

tection delay subject to constraints on the probability of false

alarm in different settings [3, 6, 7]. More recently, [8, 9] stud-

ied the change detection problem in a distributed setting using

multi-sensor observations. Also, decentralized change detec-

tion was considered in [4, 5, 8] wherein sensors send their

local decisions rather than their raw observations to a fusion

center to decide if a change has occurred.

In this paper we introduce a new framework, which we

term compressed change detection. Specifically, we show that

the aforementioned sparsity and locality in the change pro-

cess can be leveraged to compress the change detection so that

sparse statistical changes can be identified and localized using

a small number of measurements. The main approach relies

on integrating ideas from the theory of identifying codes [10]

with change point detection in sequential analysis, which to

the best of our knowledge is explored here for the first time.

Related work considered the problem of location detec-

tion in sensor networks using identifying codes [11]. Finding

identifying codes over graphs was considered in [12] and dif-

ferent greedy algorithms were proposed to find near-optimal

identifying codes. Similar ideas were used to detect faults

in multiprocessors and communication systems in [10]. In

contrast to prior work, the focus here is not on determinis-

tic or static phenomena, but rather on stochastically chang-

ing phenomena. In particular, identifying codes, which have

been traditionally used to provide unique graph covers, are

used herein to provide a unique covering of the changes in the

stochastic phenomenon. The main idea is that if the stochastic

properties of certain features change, then the changes can be

detected by examining the covering set of an identifying code

using distributed sequential change point detection.
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The rest of the paper is organized as follows. In Sec-

tion 2, the basic problem setup is introduced and some pre-

liminary background about identifying codes over graphs is

provided. In Section 3, we present the proposed approach,

which is based on integrating coding over graphs with sequen-

tial change detection. An asymptotic performance analysis of

the proposed approach is presented in Section 4 and numer-

ical results are presented in Section 5. We discuss several

generalizations in Section 6 and conclude in Section 7.

2. PROBLEM SETUP

For ease of exposition, we first describe a simplified version

of the problem. Generalizations are discussed in Section

6. Suppose there are N random features, X1, X2, . . . , XN ,

and M sensors measuring these features. The measurement,

Yi, i = 1, . . . ,M , of sensor i is only affected by a subset of

features. At some unknown point in time, an unknown subset

S of features undergoes a statistical change. Let XS denote

the set of features indexed by the set S, i.e., XS = {Xj}j∈S .

It is further assumed that the features are independent and

identically distributed with a pre-change probability density

function fXj (x) = f0(x), j = 1, . . . , N . The post change

density for the set features in S is fXj (x) = f1(x), j ∈ S,

where f0 and f1 are two distinct probability density func-

tions. The cardinality |S| of the set S is assumed to be less

than or equal to K, and it is assumed that K << N , hence

the sparsity of the change process. The goal is twofold,

namely, we would like to identify the set S while minimizing

the detection delay, and to understand the role of sparsity in

reducing the number of measurements needed to identify S.

2.1. Identifying Codes: Preliminaries

Before describing the proposed approach we provide some

necessary preliminary background. Let G = (V,E) be a

graph with node set V and edge set E. Consider any sub-

set C ⊆ V and define the identifying set of a vertex v ∈ V
with respect to C as

I(v, C) = N (v) ∩ C, (1)

where N (v) = {i ∈ V : eiv ∈ E}, is the neighborhood

of vertex v ∈ V . We can readily define an identifying code

[10, 11].

Definition 2.1 A collection of vertices C ⊆ V is called an
identifying code if ∀vi, vj ∈ V and vi �= vj

I(vi, C) �= ∅, (2)

I(vi, C) �= I(vj , C). (3)

Equation (2) in Definition 2.1 means that the identifying set

for each vertex with respect to C is non-empty, and (3) refers

to the fact that the identifying sets for different nodes are dis-

tinct. As such, it is not hard to see that an identifying code

provides a unique covering for every node. This powerful

property of identifying codes was exploited in [11] for source

localization, in [10] to detect faults in a communication net-

work, and in [13] for identifying spectrum violators in cog-

nitive radio networks. Intuitively, a target or fault can be lo-

calized by examining the signature of the fault as revealed

through the identifying set.

Finding an optimal (minimum cardinality) identifying

code C∗ over a graph is generally NP hard, however, different

greedy algorithms were proposed to find irreducible near-

optimal identifying codes (See [14] and references therein).

One approach is based on the observation that a graph admits

an identifying code if and only if the neighborhoods N (v)
for different nodes v ∈ V are distinct and non-empty [11]. In

such cases, the code can be initialized as the whole set V , then

reduced by sequentially removing vertices. In each iteration,

one vertex is eliminated based on predetermined order of the

vertices in V , and the remaining code is verified. If it satisfies

(2) and (3) then it is an ID-code and the procedure continues.

If not, the node is not eliminated and the elimination step is

repeated with the subsequent node in the predefined order.

The resulting code C is an irreducible ID-code.

3. PROPOSED APPROACH

3.1. Mapping to a Bipartite Graph

The first step of the proposed approach is to map our problem

to a bipartite graph, G = (V,E), with vertex set V = A ∪B,

where A corresponds to the set of sensors and B to the set of

features, i.e., |A| = M, |B| = N and A ∩ B = ∅. An edge,

eij ∈ E, designates that sensor i measures feature j.

3.2. Change Fingerprints

The second step is the detection of statistical changes to iden-

tify the set S. The main idea we are exploring here is that

change point detection can be applied to the measurements

of a subset of sensors that define an identifying code over the

graph G of sensors/features, thereupon the detection of sparse

statistical changes can be identified from a smaller number of

measurements. In the spirit of compressive sensing [15, 16],

the responses of different sensors are driven by more than one

feature. Only measurements from sensors measuring features

in the set S will have a change in their statistical distributions,

and thus can be detected using techniques from sequential

change detection. On account of the sparsity of the change

process and the covering property of the identifying code, the

detection of change can be efficiently compressed. Thus, the

set S can be identified from the change fingerprints.

Note that the identifying code together with the sequen-

tial change detection will provide a unique covering for any

change at any node in B. To illustrate the proposed approach,

we consider an example in Fig. 1 (a) with 7 sensors and 9

features. First, we find an ID-code consisting of nodes 1, 5, 6,
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and 7. Second, we observe the statistics for CUSUM change

detectors placed at these nodes in Fig. 1 (b)-(e). Sensors 1, 6,

and 7 detect a change as their statistics exceed a given thresh-

old. The only feature corresponding to this change pattern is

feature 8, which is thus declared as the changed feature.

However, if multiple features, say up to K, change si-

(a) Bipartite graph.
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Fig. 1. Our proposed approach for a set of 9 features (white circles)

and 7 sensors (gray circles). The bolded circles denote the ID-code.

CUSUM statistics at sensors 1, 6, and 7 exceed the threshold, thus

feature 8 is detected.

multaneously, then the idea can be extended by using a K-

identifying code. Such codes provide unique covering for

any subset of nodes of cardinality less than or equal to K.

Henceforth, and without loss of generality, we focus on a sin-

gle change and generalization to multiple changes is further

discussed in Section 6 using K-identifying codes.

4. ASYMPTOTIC ANALYSIS

In this section, we analyze the performance of the proposed

approach in the asymptotic regime where the number of fea-

tures N → ∞. This analysis gives insight into the scaling

of the detection delay as a function of the size of the graph.

In our analysis we assume that G is an Erdös-Rényi bipar-

tite graph with probability of edge placement p. The same

approach can be extended to other graphs (See Section 6).

Let v ∈ B denote the vertex corresponding to feature Xj .

To correctly declare a change for Xj , every node in the iden-

tifying set I(v, C) should detect the change and all remain-

ing nodes in the ID-code should not raise a false alarm. Let

du(k) = 1 if node u declares a change at time k and 0 other-

wise. Given that the observed pattern of change matches the

identifying set I(v, C) of a node v, and assuming that only

the sensors observing v sense the change, the detection delay

associated with a true change at node v ∈ B is

Tv = inf{k : du(k) = 1, ∀u ∈ I(v, C)}. (4)

Thus, Tv is the first time that all the nodes in the identifying

set of v declare a change. Nevertheless, due to the random-

ness of the measurements, false alarms may occur. We lower

bound the probability Pta(v) that a randomly generated code

C will generate a true event alert at node v, thus establishing

a sufficient condition for the expected detection time in terms

of the number of nodes N . Define the event E as:

E = {∃u ∈ C \ I(v, C) : du = 1}.

We further assume that conditioned on the presence or ab-

sence of an event, the signals at the different nodes are inde-

pendent. Hence,

Pta(v) ≥ P{true alert, C is an ID-code} (5)

≥ P{Ec | C is an ID-code}P{C is an ID-code} (6)

≥ (1− αf )
|C| · P{C is an ID-code} (7)

where αf is the probability of false alarm of any of the

change detectors and c denotes the complement. Henceforth,

P{E | C is an ID-code}, is termed the probability of miss de-

tection, Pmd. Thus, Pmd is the probability of misclassifying

the change, given that the graph admits an ID-code. We can

readily state the following theorem.

Theorem 4.1 For an Erdös-Rényi bipartite graph, the prob-
ability of true alert Pta(v) for a change at node v approaches

1 asymptotically if αf = o
(

1
logN

)
, where αf is the probabil-

ity of false alarm at any of the change detectors defined over
the identifying code. Furthermore, under this condition, the
expected detection delay T̄ ∈ O(logN · log logN).

To prove this theorem we establish the following lemma.

For Erdös-Rényi bipartite graphs the following lemma estab-

lishes an upper bound on the probability that a randomly gen-

erated code of size |C| is not identifying.

Lemma 4.1 Given bipartite graphs G(A ∪B, p) with |B| =
N and edge placement probability p, then the probability
Pr(C not a code) that a code C = A of size |C| is not an ID
code is upper bounded by N2(1−min{p, 2p(1− p)})|C|.
The proof of this lemma is omitted for brevity and we refer the

reader to an extended version of this work for further details.

Corollary 4.1 The probability that a randomly generated
code C is an ID-code goes asymptotically to 1 for some
|C| = O(logN), i.e., ∃ constant C1 > 0 such that:

P{C is an ID-code} → 1 if |C| ≥ C1 logN. (8)

Hence, from Corollary 4.1 it follows that for Erdös-Rényi bi-

partite graphs of size N , Pta(v) goes to 1 asymptotically if

αf = o
(

1
logN

)
. Under this sufficient condition, we can also

consider the scaling of the expected detection delay T̄ . The
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expected detection time T̄cd of the optimal change detector

scales logarithmically with the False Alarm probability αf as

T̄cd ∼ − logαf

D(f0, f1)
,

where D(f0, f1) is the KL distance between the pre-change

and post-change distributions, in which case the overall ex-

pected delay is T̄ ∈ O(logN · log logN), by corollary 4.1.

5. NUMERICAL RESULTS

To back up our asymptotic analysis we first compute the

length of the ID-code as N increases. In Fig. 2 the length

of the ID-code is plotted vs. logN . We observe that for

Erdös-Rényi bipartite random graphs, the length of the ID-

code grows logarithmically with the size of the graph, which

matches (8). This demonstrates that significant savings can

be achieved for detecting sparse changes. In Fig. 3, we ob-
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Fig. 2. Length of the ID-code vs. number of nodes in a random

bipartite graph with p = 0.5.

tain the relation between the detection delay and Pmd when

f0(x) = N (0, 1) and f1(x) = N (1, 1) using 1000 iterations

for a random bipartite graph with N = 30 and probability of

edge placement p = 0.5. This shows that a high probability

of detection can be achieved while incurring small detection

delays.
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Fig. 3. Detection delay versus probability of miss detection for a

random bipartite graph with p = 0.5.

6. GENERALIZATIONS

In this section, we briefly discuss generalizations of our ap-

proach to different scenarios.

Fig. 4. Identifying code for a 20-node graph. The nodes encircled

in red form an identifying code.

Multiple Concurrent Changes: This approach and principle

can be extended to multiple concurrent changes. The idea

is to use K-identifying codes which would provide a unique

signature for up to K simultaneous changes. In such a case

we choose a code C such that ∀ I,J ⊆ B, 1 ≤ |I|, |J | ≤ K
and I �= J

⋃
vi∈I

I(vi, C) �=
⋃

vj∈J
I(vj , C) (9)

I(vi, C) �= ∅, ∀vi ∈ B, (10)

then sequential change detection can be implemented at C.

Arbitrary Graph Topology: To this end, we have only con-

sidered Erdös-Rényi bipartite graphs. However, the approach

extends beyond bipartite graphs to graphs with arbitrary

topology. Such graphs could be used to represent other physi-

cal or social phenomena beyond the sensors/features problem

we introduced in Section 2. For example, the nodes of a given

graph can be used in an SHM application to represent a set

of critical points on the bridge structure. The connectivity

represents the load distribution across the structure. In other

words, two points i and j are connected by an edge eij if a

damage induced at node i is sensed by a sensor placed at node

j. Figure 4 shows an identifying code for a 20-node graph.

To learn this code we used the polynomial-time ID-code al-

gorithm, which can generate irreducible codes for arbitrary

topologies. Change detectors deployed at the ID code were

shown to detect a change in the distribution at any given node.

7. CONCLUSIONS

In this paper, we introduced a new framework for compressed

change detection. The main approach integrates ideas from

the theory of identifying codes over graphs and change point

detection in sequential analysis to compress the detection of

changes in stochastic phenomena. When the change process

itself is sparse, we get a significant compression in the num-

ber of measurements since the size of ID code scales only

logarithmically with the total number of nodes. We estab-

lished asymptotic results on the average detection delay for

the detection probability to go to 1. Generalizations to mul-

tiple concurrent changes and arbitrary graph topologies were

also discussed.
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