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ABSTRACT

We propose to detect edges of reflections, which we call the REF-
edges, from a single image via convex optimization. Our method
is designed based on two observations on reflections: (i) reflections
have almost monotone color and (ii) color around REF-edges varies
smoothly. The first one can be translated into the property that gra-
dients around REF-edges distribute linearly in the RGB color space,
which we call the REF-linearity. The second one can be interpreted
as follows: color differences around REF-edges are small; for an
entry of REF-edges, gradients among its surrounding entries have
small variance. Using the above properties, we characterize REF-
edges as a solution of a constrained convex optimization problem.
The optimization problem is solved by the Alternating Direction
Method of Multipliers (ADMM). Experiments using real-world im-
ages with reflections show the utility of our proposed method.

Index Terms— Reflection detection, edge detection, REF-
linearity, color difference, ADMM

1. INTRODUCTION

Images with reflections are often acquired in everyday life when
one takes pictures through transparent glass. Since such reflections
degrade application performance as well as visual quality, reflec-
tion detection is a key process in various image processing appli-
cations, including reflection removal (e.g. [1–5]), image classifica-
tion/recognition, and object detection (e.g. [6]). In particular, for
precision of object detection, edges of reflections are required to be
distinguished from those of objects desired to be detected. With this
background, reflection detection using multiple/sequential images
has been studied in, e.g., [7, 8]. However, in the case where only
a single image is given, reflection detection becomes much more
challenging and, to the best of our knowledge, has not been reported
yet.

One of the most important features of reflections is edges of re-
flections, which we call the REF-edges, because they give us many
pieces of information, including shape, size, and location. Actually,
in the work of Levin et al. [3], REF-edges marked manually have
been utilized to realize reflection removal. Therefore, an automatic
detection of REF-edges from a single image has been demanded.

In this paper, we propose to detect REF-edges from a single
image via convex optimization. Suppose that a given color image
Ugvn can be decomposed into Ugvn = Uscn+Uref , where Uscn and
Uref are the scene and reflection image, respectively. The proposed
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(a) Original (b) True REF-edges (c) REF-linearity

(d) Color differences
(e) Histograms of gradients for an entry of
non-REF-edges (left) and REF-edges (right)

Fig. 1: Three properties of REF-edges (the REF-linearity, small color dif-
ferences, and small variance of the histogram): The proposed method is de-
signed based on these properties.

method extracts REF-edges based on the following two observations
on reflections in real-world images (see Fig. 1 (a) and Fig. 3 (a), (e)):

A1. Reflections have almost monotone color.
A2. Color around REF-edges varies smoothly.
To leverage these observations in our proposed method, we first

translate them into mathematical criteria. Specifically, the observa-
tion A1 can be viewed as the linearity of the distribution of gradients
around REF-edges in the RGB color space (Fig. 1 (c)), which we
call the REF-linearity. By constructing a certain matrix based on
the gradients, the property is then reduced to the low-rankness of the
matrix. Thus, promoting the low-rankness of the matrix well charac-
terizes the true REF-edge image. The observation A2 tells us the two
properties: (i) in the L*a*b* color space, color differences1 around
REF-edges are small (Fig. 1 (d)); (ii) when we focus on an entry
of REF-edges, gradients among its surrounding entries have small
variance (see their histograms in Fig. 1 (e)). These properties im-
ply that we can expect to approximate the true REF-edge image by
removing entries of large color differences and variances. Based on
the above interpretations, we formulate an REF-edge estimation as a
constrained convex optimization problem, and solve it by the Alter-
nating Direction Method of Multipliers (ADMM) [9]. Experimental
results using real-world images with reflections illustrate the utility
of the proposed method.

1The L*a*b* color space is designed to approximate human vision. The
color difference between two colors (L∗

1, a
∗
1, b

∗
1) and

(
L∗
2, a

∗
2, b

∗
2

)
is defined

by
√(

L∗
1− L∗

2

)2
+

(
a∗1− a∗2

)2
+

(
b∗1− b∗2

)2.
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2. PRELIMINARIES

Let R, R+, R++, and N be the sets of all real numbers, non-negative
real numbers, positive real numbers, and positive integers, respec-
tively. We use boldface capital and small letters to denote matri-
ces and vectors, respectively. Moreover, we express a color image
U ∈ Rnv×nh×3 (nv, nh ∈ N) as U =

(
U(1),U(2),U(3)

)
, where

U(p) ∈ Rnv×nh (p= 1, 2, 3) denote each RGB channel of U, and
N = nvnh is the number of the entries in each RGB channel. The
(i, j)-th entry is denoted by (·)i,j . Let ∆v+ , ∆h− , ∆v+h− , and
∆v+h+ be the vertical, horizontal, and two diagonal discrete gradi-
ent linear operators with Neumann boundary.

2.1. Nuclear norm

We will use the nuclear norm, known as a convex envelope of the
rank of a matrix [10], in our optimization. It is defined, for matrices
of size 4N×3, as follows: ∥·∥∗: R

4N×3→R+ : M 7→
∑3

p=1sp(M),
where sp (·) is the p-th largest singular value of (·). We denote the
singular value decomposition of M ∈ R4N×3 as the matrix M =
PΣQ⊤, where P ∈ R4N×4N , Q ∈ R3×3 are orthogonal matrices,
and Σ ∈ R4N×3 contains the singular values on its main diagonal
and 0’s elsewhere ((·)⊤ stands for the transposition).

2.2. Alternating Direction Method of Multipliers (ADMM)

The Alternating Direction Method of Multipliers (ADMM) [9] can
solve the following convex optimization problem:

minimize
X∈X

f (X) + g
(
Λ(X)

)
, (1)

where f : X → (−∞,∞] and g : Y → (−∞,∞] are proper
lower semicontinuous convex functions, and Λ : X → Y is a linear
operator (X and Y stand for real Hilbert spaces with the standard in-
ner product ⟨·, ·⟩ and its induced norm ∥·∥). The ADMM iteratively
computes the following steps:

X(k+1) = arg min
X∈X

f(X) + ρ
2
∥Λ(X)−Y(k) + 1

ρ
Θ(k)∥2, (2)

Y(k+1) = proxρ−1g

(
Λ(X(k+1)) + 1

ρ
Θ(k)

)
, (3)

Θ(k+1) = Θ(k) + ρ
(
Λ(X(k+1))−Y(k+1)),

where ρ ∈ R++ and proxρ−1g denotes the proximity operator2 of g.
The convergence of the ADMM has been studied by, e.g., Eckstein
and Bertekas [11].

3. PROPOSED METHOD

We propose an REF-edge detection method based on convex opti-
mization whose action is illustrated in Fig. 2. First, applying an ex-
isting edge detector to a given color image with reflections Ugvn ∈
Rnv×nh×3, we obtain an initial edge image Egvn ∈ {0, 1}nv×nh .
Next, we extract REF-edges from the initial edge image Egvn by
solving a certain convex optimization problem. Finally, the extracted
REF-edge image is binarized by a simple thresholding operation. In
what follows, we elaborate on the key step of the proposed method,
i.e., the optimization.

2For any γ ∈ R++, the proximity operator of a proper lower
semicontinuous convex function f on X is given by proxγf (X) :=

argminY∈X
{
f(Y) + 1

2γ
∥X−Y∥2

}
.

Edge detection Optimization Thresholding

Fig. 2: The flowchart in the proposed REF-edge detection.

3.1. Formulation

For an initial edge image Egvn, we estimate an REF-edge image by
solving the following convex optimization:3

minimize
E∈C

Egvn
[0,1]

∩C
Egvn
ε

∥Φ(E)∥∗+
λ1
2
∥ΩL*a*b*(E)∥2F+

λ2
2
∥Ωvar(E)∥2F , (4)

where the first term is designed to promote the REF-linearity, the
second term to remove entries of large color differences, the third
term to eliminate entries of large variance, and the constraints ex-
press the fidelity regarding Egvn. Detailed explanations are given
below.

3.1.1. The first term in (4)

To exploit the REF-linearity in the estimation, we translate it into the
low rankness of a certain matrix, which we call the RGB-gradient
matrix, defined as follows. Let D(Ugvn,E)

v+ ∈ RN×3 be the matrix
defined by using E ∈ Rnv×nh , i.e.,

D
(Ugvn,E)
v+ :=

[
d
(U

(1)
gvn,E)

v+ d
(U

(2)
gvn,E)

v+ d
(U

(3)
gvn,E)

v+

]
∈ RN×3,

where d
(U

(p)
gvn,E)

v+ := vec
(
∆v+(U

(p)
gvn) ⊛ E

)
∈ RN (p = 1, 2, 3).

Here, the entry-wise multiplication between X and Y is defined by
(X ⊛ Y)i,j := (X)i,j(Y)i,j , and the linear operator vec(·) maps
a matrix [x1 x2 . . . xnh ] ∈ Rnv×nh to the corresponding vector
[x⊤

1 x⊤
2 . . . x⊤

nh
]⊤ ∈ RN . The matrices D

(Ugvn,E)

h+
, D(Ugvn,E)

v+h−
,

and D
(Ugvn,E)

v+h+
are constructed in a similar way. The RGB-gradient

matrix is then defined by Φ(E), where

Φ : Rnv×nh → R4N×3 : E 7→


D

(Ugvn,E)
v+

D
(Ugvn,E)

h+

D
(Ugvn,E)

v+h−

D
(Ugvn,E)

v+h+

.
If E is the true REF-edge image, the rank of the RGB-gradient ma-
trix is low because its column vectors are linearly dependent. Hence,
suppressing the nuclear norm of the RGB-gradient matrix leads to
an efficient promotion of the REF-linearity (similar translation of
linearity into low-rankness is adopted in [12]).

3.1.2. The second term in (4)

To extract entries of small color differences, we assign large weight
to entries corresponding to large color differences, which results
in removing entries of large weight via minimization of (4). To
do so, we introduce a weight matrix WL*a*b* ∈ Rnv×nh

+ whose
(i, j)-th entry is defined by the sum of its surrounding entries of
total color differences of four directions normalized so that max

3For a matrix X ∈ Rm×n (m,n ∈ N), the Frobenius norm is defined

by ∥X∥F :=
√∑

i,j |(X)i,j |2.
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value of all entries is 1. More precisely, the total color differences is
C(Ugvn) := C

(Ugvn)
v+ +C

(Ugvn)

h+
+C

(Ugvn)

v+h−
+C

(Ugvn)

v+h+
∈ Rnv×nh

+ ,

where
(
C

(Ugvn)
•

)
i,j

:=
(∑3

p=1

(
∆•(Û

(p)
gvn)

)2
i,j

)1
2 for any • ∈ {v+,

h+, v+h−, v+h+} and Ûgvn :=(Û
(1)
gvn, Û

(2)
gvn, Û

(3)
gvn)∈Rnv×nh×3 is

an L*a*b* color image transformed from a given RGB color image
Ugvn; and when we focus on an entry, its weight is the normal-
ized sum of its surrounding entries of the total color differences,
i.e., (WL*a*b*)i,j := 1

mL*a*b*

∑
(i1,j1)∈Ii,j

(C(Ugvn))i1,j1 , where

mL*a*b* := maxi,j

∑
(i1,j1)∈Ii,j

(C(Ugvn))i1,j1 and Ii,j denotes an
index set of the (i1, j1)-th entries in an area of a certain radius r,
which depends on the size of an image, around the (i, j)-th entry.
Finally, the second term in (4) is designed as the Frobenius norm of
ΩL*a*b*(E), where

ΩL*a*b* : Rnv×nh → Rnv×nh : E 7→ WL*a*b* ⊛E.

A2 implies that if E is the true REF-edge image, the magnitude
of ΩL*a*b*(E) is small. Hence, suppressing the Frobenius norm of
ΩL*a*b*(E) is expected to remove non-REF-edges from Egvn.

3.1.3. The third term in (4)

Similarly to the second term, we eliminate entries of large variance
of gradients by assigning large weights. For this purpose, we con-
struct a weight matrix Wvar ∈ Rnv×nh

+ whose (i, j)-th entry is de-
fined by the sum of its surrounding entries of total RGB variance
normalized so that maximum value of all entries becomes 1. In de-
tail, the total RGB variance is V(Ugvn):=

∑3
p=1V

(U
(p)
gvn)∈Rnv×nh

+ ,

where (V(U
(p)
gvn))i,j equals the variance4 of (i, j)-th gradient data

set δ(p)i,j :=
{(

(U
(p)
gvn)i1,j1−(U

(p)
gvn)i2,j2

)
i1,j1

∈R
∣∣∣ (i1, j1)∈Ii,j

}
and the (i1, j1)-th and (i2, j2)-th entries are symmetrical with re-
spect to the (i, j)-th entry; and weight of each entry is defined by
the normalized sum of its surrounding entries of the total RGB vari-
ance, i.e., (Wvar)i,j := 1

mvar

∑
(i1,j1)∈Ii,j

(V(Ugvn))i1,j1 , where

mvar := maxi,j

∑
(i1,j1)∈Ii,j

(V(Ugvn))i1,j1 . In final, the third
term is designed as the Frobenius norm of Ωvar(E), where

Ωvar : Rnv×nh → Rnv×nh : E 7→ Wvar ⊛E.

Again, provided that E is the true REF-edge image, the magnitude
of Ωvar(E) is small. Therefore, suppressing the Frobenius norm of
Ωvar(E) gives a good estimate of the true REF-edge image.

3.1.4. The constraints in (4)

Since an initial edge image Egvn contains REF-edges, the estimated
REF-edge image should satisfy the following constraints:

C
Egvn

[0,1] :=

{
E∈Rnv×nh

∣∣∣∣ (E)i,j =0 if (Egvn)i,j =0
(E)i,j ∈ [0, 1] if (Egvn)i,j =1

}
, (5)

C
Egvn
ε :=

{
E∈Rnv×nh

∣∣∣∥E−Egvn∥1 :=
∑

i,j |(E−Egvn)i,j | ≤ ε
}
,

where ε ∈ R++ is selected based on the number of non-REF-edges.
The constraint C

Egvn

[0,1] expresses that entries detected as edges in
Egvn are only allowed to become REF-edges. Meanwhile, the con-
straint CEgvn

ε represents the ℓ1-norm fidelity to Egvn. This is be-

4The variance of (i, j)-th gradient data set δ(p)i,j is defined by σ2(δ
(p)
i,j ) :=

1
|Ii,j |

∑
xi1,j1

∈δ
(p)
i,j

(xi1,j1−xi,j)
2, where |Ii,j | is the cardinality of Ii,j

and xi,j := 1
|Ii,j |

∑
xi1,j1

∈δ
(p)
i,j

xi1,j1 .

Algorithm 1 Solver for the problem in (6)

1: Get Egvn. Set k=0 and E(0)=Egvn. Choose ε, ρ ∈ R++.
2: Y

(0)
1 ←Φ(E(0)), Y(0)

2 ←E(0), Θ(0)
1 ←Φ(E(0)), Θ(0)

2 ←E(0).
3: while a stop criterion is not satisfied do
4: E(k+1) ← P

C
Egvn
[0,1]

((
Ω∗ ◦ Ω+ ρ(Φ∗ ◦ Φ+ I∗ ◦ I)

)−1

(
Φ∗(ρY

(k)
1 −Θ

(k)
1 ) + (ρY

(k)
2 −Θ

(k)
2 )

))
.

5: Y
(k+1)
1 ← proxρ−1∥·∥∗

(
Φ(E(k+1)) + 1

ρ
Θ

(k)
1

)
.

6: Y
(k+1)
2 ← P

C
Egvn
ε

(
E(k+1) + 1

ρ
Θ

(k)
2

)
.

7: Θ
(k+1)
1 ← Θ

(k)
1 + ρ

(
Φ(E(k+1))−Y

(k+1)
1

)
.

8: Θ
(k+1)
2 ← Θ

(k)
2 + ρ

(
E(k+1) −Y

(k+1)
2

)
.

9: k ← k + 1.
10: end while
11: Output E(k).

cause entries corresponding to non-REF-edges in Egvn can be seen
as an impulsive noise added to the true REF-edge image. Note that
the ℓ1-norm is widely recognized as a robust fidelity measure for an
impulsive noise contamination.

3.2. Solver

We provide an efficient algorithmic solution to (4) by applying the
ADMM. First, (4) is rewritten as

minimize
E∈Rnv×nh

1
2
∥Ω(E)∥2F +ι

C
Egvn
[0,1]

(E)+∥Φ(E)∥∗+ι
C

Egvn
ε

(E), (6)

where the linear operator Ω : Rnv×nh → Rnv×nh is defined by

Ω : (E)i,j 7→ (E)i,j

√
λ1 (WL*a*b*)

2
i,j + λ2 (Wvar)

2
i,j ,

and ι
C

Egvn
[0,1]

and ι
C

Egvn
ε

are the indicator functions5 of C
Egvn

[0,1] and

C
Egvn
ε , respectively. Now let

f : Rnv×nh → [0,∞] : E 7→ 1
2
∥Ω(E)∥2F + ι

C
Egvn
[0,1]

(E), (7)

Λ : Rnv×nh → R4N×3 × Rnv×nh : E 7→
(
Φ(E),E

)
, (8)

g : R4N×3 × Rnv×nh → [0,∞]

: (Z1,Z2) 7→ ∥Z1∥∗ + ι
C

Egvn
ε

(Z2). (9)

Then, (6) is reduced to (1), so that we can utilize the ADMM for
solving (6). The detail of the algorithm is shown in Algorithm 1,
where I denotes the identity operator, and (·)∗ stands for the adjoint
of (·). Its implementation is summarized in Remark 3.1. Since a so-
lution of (6) obtained by Algorithm 1 may consist of values between
0 and 1, we finally binarize it using threshold 0.5.

Remark 3.1. (Implementation of Algorithm 1)
• To compute the first step obtained by substituting (7) and (8) to

(2), we require to solve the following zero-inclusion problem: find
E s.t.6

0∈(Ω∗◦ Ω+ρΛ∗◦Λ)(E)+∂ι
C

Egvn
[0,1]

(E)−ρΛ∗(Y(k)− 1
ρ
Θ(k)). (10)

5For a given nonempty convex set C, the indicator function ιC is de-
fined by ιC(X) := 0, if X ∈ C; ∞, otherwise. The proximity operator
of ιC is equivalent to the metric projection onto C, i.e., proxγιC (X) =
argminY ∈C ∥X−Y∥ =: PC(X) (∀γ ∈ R++).

6The subdifferential of a proper lower semicontinuous function f onX is
defined by the following set-valued operator:

∂f : x 7→ {u ∈ X | (∀y ∈ X ) ⟨y − x,u⟩+ f(x) ≤ f(y)}.
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(a) Ugvn (b) Egvn (tc = 0.04) (c) Proposed (ε = 10850) (d) True REF-edges

(e) Ugvn (f) Egvn (tc = 0.08) (g) Proposed (ε = 770) (h) True REF-edges

Fig. 3: The results on the proposed method using real-world images: (c) and (g) show that our proposed method achieves an accurate estimation of REF-edges
close to true REF-edges which are extracted manually from Egvn.

Fortunately, the linear operators Ω and Λ are simply the entry-
wise multiplication, and the set CEgvn

[0,1] expresses the product of
the closed intervals defined in (5). Hence, the inclusion prob-
lem can be solved with respect to each entry.7 Consequently,
the solution of (2) can be calculated as step 4 in Algorithm 1,
where P

C
Egvn
[0,1]

: Rnv×nh → Rnv×nh is the metric projection

onto C
Egvn

[0,1] given by

P
C

Egvn
[0,1]

: (E)i,j 7→


0 if

(
(Egvn)i,j =0

)
∨
(
(E)i,j<0

)
,

(E)i,j if
(
(Egvn)i,j =1

)
∧
(
0≤(E)i,j ≤1

)
,

1 if
(
(Egvn)i,j =1

)
∧
(
(E)i,j >1

)
.

• The computation of (3) can be decoupled with respect to the prox-
imity operators of each function in (9). The proximity operator of
∥·∥∗ is given by

proxγ∥·∥∗
: R4N×3 → R4N×3 : M 7→ PΣ̃Q⊤,

where the matrices P and Q are the left-singular and right-
singular matrices of M, and the matrix Σ̃ contains the singular
values shrank by γ on its main diagonal and 0’s elsewhere. Mean-
7The inclusion problem in (10) with respect to each entry is equivalent

to find (E)i,j s.t. 0 ∈ αi,j(E)i,j + ∂ι
C

(Egvn)i,j
[0,1]

(
(E)i,j

)
− βi,j , where

αi,j ∈ R++ is the weight corresponding to the (i, j)-th multiplication re-
garding (Ω∗ ◦ Ω + ρΛ∗ ◦ Λ), βi,j :=

(
ρΛ∗(Y(k) − 1

ρ
Θ(k))

)
i,j

, and

C
(Egvn)i,j
[0,1]

is the (i, j)-th closed interval. Since ∂ι
C

(Egvn)i,j
[0,1]

(
(E)i,j

)
over

αi,j equals ∂ι
C

(Egvn)i,j
[0,1]

(
(E)i,j

)
, we obtain

(E)i,j = P
C

(Egvn)i,j
[0,1]

(αi,j/βi,j).

while, the proximity operator of ι
C

Egvn
ε

can be calculated by a
fast ℓ1-ball projection technique [13].

4. EXAMPLES

We examine the effectiveness of the proposed method using real-
world images containing reflections. In Algorithm 1, we generate
an initial edge image Egvn using the Canny’s edge detector [14],
which is a well-known edge detector, with threshold tc to each RGB
channel of Ugvn. Then, we apply Algorithm 1 to the images, where
nv =nh =250, r=15, ρ=1, λ1 =100, λ2 =30, and the stopping
criterion is ∥E(k+1) − E(k)∥F ≤ 10−4. The weights λ1 and λ2 are
determined according to the strength of reflections and frequency of
color change.

Results are shown in Fig. 3 (including given color images, ini-
tial edge images, the estimate by using the proposed method, and
true REF-edge images). The use of the proposed method achieves
a sufficient extraction of REF-edges without containing almost all
non-REF-edges, so that the resulting estimate is very close to the
true REF-edge images that are manually detected.

5. CONCLUDING REMARKS

We have proposed to detect edges of reflections, i.e., REF-edges,
from a single image via convex optimization. The proposed method
exploits the REF-linearity, small color differences, and small vari-
ance of gradients characterizing REF-edges in our optimization for-
mulation. The optimization problem is solved by the ADMM. We
have illustrated that the proposed method detects REF-edges effec-
tively from real-world images containing reflections.
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