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ABSTRACT

This paper revisits the problem of data-adaptive learning of geomet-
ric signal structures based on the Union-of-Subspaces (UoS) model.
In contrast to prior work, it motivates and investigates an extension
of the classical UoS model, termed the Metric-Constrained Union-
of-Subspaces (MC-UoS) model. In this regard, it puts forth two
iterative methods for data-adaptive learning of an MC-UoS in the
presence of complete and missing data. The proposed methods out-
perform existing approaches to learning a UoS in numerical exper-
iments involving both synthetic and real data, which demonstrates
effectiveness of both an MC-UoS model and the proposed methods.

Index Terms— Nonlinear signal models, union of subspaces

1. INTRODUCTION

Much of machine learning, signal processing, and statistics literature
is based on the premise that high-dimensional signals lie on or near
low-dimensional structures embedded in higher-dimensional ambi-
ent spaces. Knowledge of the low-dimensional structure underly-
ing a high-dimensional signal set helps reveal the information one
is looking for, thereby greatly simplifying the sampling, processing,
computational, and storage requirements [1]. But this knowledge is
seldom, if ever, available to practitioners. Because of this, a signifi-
cant fraction of the literature is devoted to study of plausible signal
models and either characterization or learning of low-dimensional
structures adhering to a prescribed signal model [2–5].

Two insights have emerged from decades of research on sig-
nal models. First, nonlinear signal models provide better abstrac-
tions of the real world signals than linear signal models [6]. Sec-
ond, data-adaptive learning of signal models from training exam-
ples results in better performance than off-the-shelf characterization
of low-dimensional structures describing the signal models of inter-
est [7]. In recent years, a nonlinear signal model that has in par-
ticular helped advance the state-of-the-art in many applications is
the union-of-subspaces (UoS) model [1, 8–10]. The UoS model,
which is a generalization of the vanilla sparsity model, states that
signals belong to a union of low-dimensional subspaces. While data-
adaptive learning of subspaces underlying a UoS dates back more
than a decade [11, 12], interest in this area has exploded in recent
years because of our move toward a data-driven society. A necessar-
ily incomplete list of works in this regard includes [5, 10, 13–21].

Our Contributions: The canonical UoS model does not im-
pose any structure on the collection of subspaces underlying signals
of interest. Intuitively, however, one expects that if a UoS describes
similar signals (e.g., frontal face images of a single person) then the
underlying collection of subspaces should be “related” to each other.
In addition, it stands to reason that methods for learning UoS’s would
be better able to thwart errors caused by noise, outliers, missing data,

etc., if they could explicitly account for any such relationship be-
tween subspaces describing a UoS. In order to capture this intuition
of “related subspaces,” we put forth a novel extension of the tra-
ditional UoS model, termed metric-constrained union-of-subspaces
(MC-UoS) model. Heuristically, the MC-UoS model states that sig-
nals not only belong to a union of low-dimensional subspaces, but
the individual subspaces are also close to each other with respect
to a metric defined on the Grassmann manifold. The main challenge
in this regard is formulation of methods for data-adaptive learning of
subspaces underlying an MC-UoS. We address this challenge by pre-
senting two iterative algorithms, termed MiCUSaL and rMiCUSaL,
for data-adaptive learning of an MC-UoS using complete data and
missing data, respectively. In order to demonstrate effectiveness of
both the MC-UoS model and the proposed algorithms, we carry out
extensive numerical experiments using synthetic and real data. Re-
sults of these experiments demonstrate that both MiCUSaL and rMi-
CUSaL outperform existing approaches to data-adaptive learning of
a UoS in terms of robustness to noise, outliers, and missing data.

Notation: We use lower-case and upper-case letters for vectors
and matrices, respectively. In addition, (·)T and tr(·) denote trans-
pose and trace operations, respectively, while ‖ · ‖F and ‖·‖p denote
Frobenius norm and `p norm of matrices and vectors, respectively.
Given a set Ω, AΩ (resp., vΩ) denotes the submatrix of A (resp.,
subvector of v) corresponding to the rows of A (resp., entries of v)
indexed by Ω. Finally, aij denotes the (i, j)-th element ofA and v(i)
denotes the i-th entry of a vector v.

2. PROBLEM FORMULATION

In this section, we mathematically formulate the problem studied in
this paper. Recall the canonical UoS model [8], which asserts that
signals of interest lie in a union of K low-dimensional subspaces:
M =

⋃K
k=1 Sk, where Sk is a subspace of Rn. In here, we make

the simplified assumption that ∀k, dim(Sk) = s � n. The basic
premise behind this paper is that the Sk’s underlying similar signals
likely do not correspond to arbitrary points on the Grassmann man-
ifold Gn,s, defined as the collection of all s-dimensional subspaces
of Rn. In order to formalize this idea, we put forth the definition of
a metric-constrained union-of-subspaces (MC-UoS).

Definition 1. (Metric-Constrained Union-of-Subspaces.) A UoS
M =

⋃K
k=1 Sk is said to be constrained with respect to a metric

du : Gn,s×Gn,s → [0,∞) if maxj,k:j 6=k du(Sj ,Sk) ≤ ε for some
positive constant ε.

In words, the MC-UoS model asserts that signals of interest lie
in a union of K low-dimensional subspaces that are also “close”
to each other. Our goal in this paper is to learn an MC-UoSM in
a data-adaptive manner. To this end, we assume access to a total
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of N training samples, Y = {yi ∈ Rn}Ni=1, that correspond to
(possibly noisy) samples drawn fromM. The problem of learning
M in this setting can be posed as learning K-subspaces, {Sk}Kk=1,
such that (i) each yi is well approximated by one of the Sk’s, and
(ii) the Sk’s are close to each other. The metric we use in here to
measure closeness of subspaces on Gn,s is based on the Hausdorff
distance, defined initially in [22] and proven to be a metric in [23].
Specifically, ifDk ∈ Rn×s denotes an orthonormal basis of Sk, then

du(Sj ,Sk) =
√
s− tr(DT

j DkD
T
kDj) = ‖Dk − PSjDk‖F , (1)

where PSj denotes the projection operator PSj = DjD
T
j . Note that

being a distance on Gn,s, du(·, ·) in (1) is invariant under the choice
of orthonormal bases of the two subspaces. While there exist other
measures of subspace distances in the literature (see, e.g., [24]), we
prefer (1) because of its ease of computation.

The preceding discussion helps us pose the problem of learning
an MC-UoSM in terms of the following optimization problem:

{Sk} = arg min
{Sk}⊂Gn,s

K∑
j,k=1
j 6=k

d2
u(Sj ,Sk) + λ

N∑
i=1

‖yi − PS
î
yi‖22, (2)

where î = arg mink ‖yi−PSkyi‖
2
2 with PSkyi denoting the projec-

tion of yi onto Sk. In words, the first term in (2) forces the learned
subspaces to be close to each other, the second term in (2) forces
the learned subspaces to provide reasonable approximations of the
training data, and the parameter λ quantifies the desired trade-off
between subspace closeness and data approximation. Our objective
then is to provide fast computational methods for solving (2) for the
cases of “complete” training data and “missing” training data.

3. MC-UOS LEARNING FROM COMPLETE DATA

In this section, we propose an algorithm for solving (2) for the case
of complete training data. We begin by simplifying the expression
in (2). To this end, we first define a K ×N indicator matrix W as

W
def
=
[
wki ∈ {0, 1} : ∀i = 1, . . . , N,

K∑
k=1

wki = 1
]
. (3)

In words,W specifies memberships of the yi’s in different subspaces
and wki = 1 if and only if yi belongs to the subspace Sk. Next,
notice from elementary manipulations that

‖yi − PSkyi‖
2
2 = ‖yi −DkDT

k yi‖22 = ‖yi‖22 − ‖DT
k yi‖22,

where once again Dk denotes an orthonormal basis of Sk. There-

fore, defining D
def
=
[
D1 . . . DK

]
, (2) can be equivalently ex-

pressed as (D,W ) = arg minD,W F (D,W ) such that

F (D,W ) =

K∑
j,k=1
j 6=k

‖Dk − PSjDk‖
2
F +

λ

N∑
i=1

K∑
k=1

wki (‖yi‖22 − ‖DT
k yi‖22). (4)

Instead of minimizing (4) simultaneously over (D,W ), which
will be computationally difficult, we will resort to minimizing it by
alternating between minimizing F (D,W ) over W for a fixed D

Algorithm 1 Metric-Constrained UoS Learning (MiCUSaL)
Input: Training data Y ; problem parameters K, s, and λ.
Initialize: Orthonormal bases Dk, k = 1, . . . ,K.

1: while stopping rule do
2: for i = 1 to N (Subspace Assignment) do
3: li ← arg maxk ‖DT

k yi‖2, w
li
i ← 1, ∀k 6= li, w

k
i ← 0.

4: end for
5: for k = 1 to K (Subspace Update) do
6: ck ← {1 ≤ i ≤ N : wki = 1}, Yk ←

[
yi : i ∈ ck

]
.

7: Ak ←
∑
j 6=kDjD

T
j + λ

2
YkY

T
k .

8: Eigen decomposition of Ak : UkΣkU
T
k = Ak.

9: Dk ← columns of Uk corresponding to s-largest
diagonal elements in Σk.

10: end for
11: end while
Output: Orthonormal bases Dk, k = 1, . . . ,K.

and minimizing F (D,W ) over D for a fixed W . In the following,
we term minimization of F (D,W ) over W for a fixed D as the
subspace assignment step and minimization of F (D,W ) over D
for a fixed W as the subspace update step. In terms of performance
measure, we are in particular interested in a partial optimal solution,
defined as follows.

Definition 2 ([25]). A point (D∗,W ∗) is a partial optimal solution
of arg minD,W F (D,W ) if ∀D,F (D∗,W ∗) ≤ F (D,W ∗) and
∀W,F (D∗,W ∗) ≤ F (D∗,W ).

We refer the reader to [26] for a discussion of the significance of
partial optimal solutions in the context of our problem.

In order to obtain a partial optimal solution, we begin with sub-
space assignment. When D is fixed, subspace assignment simply
corresponds to solving ∀i = 1, . . . , N ,

li = arg min
k=1,...,K

‖yi − PSkyi‖
2
2 = arg max

k=1,...,K
‖DT

k yi‖22 (5)

and then setting wlii = 1. On the other hand, subspace update,
which corresponds to a fixed W , is a more challenging task. In
order to address this challenge, we resort to block-coordinate de-
scent (BCD) [27], which results in sequential updates of the Dk’s
in D. Specifically, let ck = {i ∈ {1, . . . , N} : wki = 1} denote
the indices of all yi’s that are assigned to the k-th subspace and de-
fine Yk =

[
yi : i ∈ ck

]
to be the corresponding n × |ck| matrix.

Then, for a fixed W , the K subproblems corresponding to BCD of
minD F (D,W ) can be expressed after some manipulations as

Dk = arg min
Dk∈Vn,s

∑
j 6=k

‖Dk − PSjDk‖
2
F +

λ

2
(‖Yk‖2F − ‖DT

k Yk‖2F ),

where Vn,s denotes the Stiefel manifold (i.e., collection of all n× s
orthonormal matrices). We can simplify the above expression to re-
duce each BCD subproblem to the following maximization problem:

Dk = arg max
Dk∈Vn,s

tr
(
DT
k (
∑
j 6=k

DjD
T
j +

λ

2
YkY

T
k )Dk

)
. (6)

We now define Ak =
∑
j 6=kDjD

T
j + λ

2
YkY

T
k . It then follows

from [28] that max tr(DT
k AkDk) has a closed-form solution and the

Dk that achieves the maximum is simply given by the s eigenvectors
of Ak associated with its s-largest eigenvalues. This completes our
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description of the subspace update step. Combining the subspace as-
signment and subspace update steps, we can now formally describe
our algorithm in Algorithm 1, which we term as metric-constrained
union-of-subspaces learning (MiCUSaL). The following theorem,
stated without proof because of space constraints, describes conver-
gence behavior of MiCUSaL.

Theorem 1. MiCUSaL is guaranteed to converge. It also returns a
partial optimal solution if ∀k, arg maxDk

tr(DT
k AkDk) during the

subspace update step has a unique solution.

We conclude by pointing out that a necessary and sufficient condition
to have a unique solution to arg maxDk

tr(DT
k AkDk) is to have

distinct s-th and (s+ 1)-th largest eigenvalues of Ak.

4. MC-UOS LEARNING FROM MISSING DATA

In this section, we study MC-UoS learning for the case of training
data with missing entries. The setup here corresponds to observing
each yi at locations Ωi ⊂ {1, . . . , n} with |Ωi| ≥ s, denoted by
yΩi ∈ R|Ωi|. Since we do not have access to the complete yi’s, the
quantities ‖yi−PSkyi‖

2
2 in (2) cannot be computed directly. Instead,

we leverage the results in [29] and replace ‖yi − PSkyi‖
2
2 by

‖yΩi − PSkΩi
yΩi‖

2
2 = yTΩi

(
I −DkΩi(D

T
kΩi

DkΩi)
−1DT

kΩi

)
yΩi ,

where PSkΩi

def
= DkΩi(D

T
kΩi

DkΩi)
−1DT

kΩi
. In this case, we can

reformulate (2) as (D,W ) = arg minD,W G(D,W ), where

G(D,W ) =

K∑
j,k=1
j 6=k

‖Dk − PSjDk‖
2
F +

λ

N∑
i=1

K∑
k=1

wki ‖yΩi − PSkΩi
yΩi‖

2
2. (7)

In order to solve this problem, we once again make use of alter-
nating minimization comprising subspace assignment and subspace
update steps. When D is fixed, subspace assignment in here cor-
responds to solving ∀i, li = arg mink=1,...,K ‖yΩi − PSkΩi

yΩi‖22.
When W is fixed, we carry out subspace update using BCD again,
in which case arg minD G(D,W ) can be shown to be comprised of
the following K subproblems: Dk = arg minDk∈Vn,s

g(Dk) with

g(Dk)
def
= −tr(DT

k AkDk) +
λ

2

∑
i∈ck

‖yΩi − PSkΩi
yΩi‖

2
2. (8)

Here, ck is as defined in Section 3 and Ak =
∑
j 6=kDjD

T
j .

It can be shown that g(Dk) is invariant to the choice of the or-
thonormal basis of Sk. Hence minDk∈Vn,s g(Dk) is an opti-
mization problem on the Grassmann manifold [30]. The cost
function g(Dk) consists of 1 + |ck| terms. In order to mini-
mize it, we employ incremental gradient descent procedure [31]
and operate on a single component in each step. Inspired from
algorithms in [30], we first compute the gradient of one term,
and move along a short geodesic curve in the gradient direction.

To be specific, the gradient of g1(Dk)
def
= −tr(DT

k AkDk) is
∇g1 = (In − DkDT

k ) dg1
dDk

= −2(In − DkDT
k )AkDk, where In

denotes the n×n identity matrix. The geodesic equation for a curve
Dk(η) in the direction −∇g1 with a step length η is [30]

Dk(η) = DkVk cos(Σkη)V Tk + Uk sin(Σkη)V Tk , (9)

Algorithm 2 Robust MC-UoS Learning (rMiCUSaL)

Input: Training data {yΩi}Ni=1; parameters K, s, λ and η.
Initialize: Orthonormal bases Dk, k = 1, . . . ,K.

1: while stopping rule do
2: for i = 1 to N (Subspace Assignment) do
3: li ← arg mink ‖yΩi − PSkΩi

yΩi‖22.
4: wlii ← 1,∀k 6= li, w

k
i ← 0.

5: end for
6: for k = 1 to K (Subspace Update) do
7: ck ← {1 ≤ i ≤ N : wki = 1}.
8: while stopping rule do
9: Ak ←

∑
j 6=kDjD

T
j ,∆k ← 2(In −DkDT

k )AkDk.
10: Dk ← DkVk cos(Σkη)V Tk + Uk sin(Σkη)V Tk

where UkΣkV
T
k is the compact SVD of ∆k.

11: for p = 1 to |ck| do
12: θ ← (DT

kΩck(p)
DkΩck(p)

)−1DT
kΩck(p)

yΩck(p)
.

13: q ← Dkθ, r ← yΩck(p)
− qΩck(p)

.
14: r̂ ← 0, r̂Ωck(p)

← r.

15: Dk ← Dk +
(

(cos(µλη)− 1) q
‖q‖2

+

sin(µλη) r̂
‖r̂‖2

)
θT

‖θ‖2
where µ = ‖r̂‖2‖q‖2.

16: end for
17: end while
18: end for
19: end while
Output: Orthonormal bases Dk, k = 1, . . . ,K.

where UkΣkV
T
k is the SVD decomposition of −∇g1. Note that (8)

in here differs from [32, Eqn (2)] only in terms of one additional
term g1 and a scaling factor λ

2
of all other terms in g(Dk). It there-

fore follows that the optimization of other terms in g(Dk) can be
performed as in GROUSE [32] but with a constant step size λη

2
. We

conclude this section by presenting our algorithm in Algorithm 2,
termed Robust MC-UoS Learning (rMiCUSaL).

5. SIMULATION RESULTS AND DISCUSSION

In this section, we evaluate the performance of our proposed meth-
ods on both synthetic and real data. In the complete data setting,
we compare the performance of MiCUSaL with Block-Sparse Dic-
tionary Design (SAC+BK-SVD) [10], K-subspace clustering (K-
sub) [33], Sparse Subspace Clustering (SSC) [15] and Robust Sub-
space Clustering (RSC) [17]. For the case of missing training data,
we compare the results of rMiCUSaL with K-Subspaces with Miss-
ing Data (k-GROUSE) [21] and SSC [15]. In order to study the
robustness of our methods, we assume every training and test sam-
ple y is noisy in the sense that y = x + v where x belongs to one
of the Sk’s (also ‖x‖22 = 1) and v is additive white Gaussian noise
with variance σ2. We use X and Xte to denote “clean” training
and test signals respectively, while the set of noisy test samples is
denoted by Y te. In our experiments, we add white Gaussian noise
with different expected noise power (E[‖v‖22] = nσ2) ranging from
0.1 to 0.5 to the “clean” training and test samples. For the missing
data experiments, we create training (but not test) data with different
percentages of missing values ranging from 20% to 50% for every
fixed noise power. Finally, we choose λ = 1 for all experiments.

Experiments with Synthetic Data: We first consider an exper-
iment on synthetic data with parameters K = 4, s = 15, n = 100
andN = 400. We define the ground-truth Sk’s by their orthonormal
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Fig. 1. Comparison of MC-UoS learning performance on synthetic
data. (a) and (b) show relative errors and davg’s for complete data.
(c) and (d) show relative errors and davg’s for missing data case.

bases {Uk ∈ Rn×s}Kk=1. To generate the Sk’s, we start with a ran-
dom orthonormal basis U ∈ Rn×s and let Sk = span(Wk) where
Wk = U + tBk with Bk a random Gaussian n × s matrix and pa-
rameter t controlling the distance between subspaces. To make the
Sk’s close to each other, we set t = 0.05.

After generating the subspaces, we generate a set of points from
Sk as Xk = UkCk, where Ck ∈ Rs×M (M = N

K
= 100) is a ma-

trix whose entries are i.i.d. random variables with N (0, 1) distribu-
tion. We then stack all the data into a matrix X =

[
X1, . . . , X4

]
=

{xi}Ni=1 and normalize all the points to unit `2 norms. Test data
Xte = {xtei }Ni=1 is produced using the same foregoing strategy.

Next, we make use of a collection of noisy samples, Y , to learn
a union of K subspaces and stack the learned orthonormal bases
{Dk}Kk=1 into D. For MC-UoS learning performance analysis, we
define davg as the average of normalized subspace distances between

pairs of Dk’s and Uk’s as davg
def
= 1

K

∑K
k=1

√
s−tr(DT

k
U

k̂
UT

k̂
Dk)

s
,

where k̂ = arg maxj ‖DT
k Uj‖F . We also ensure that no two Dk’s

are matched to the sameUk. A smaller davg indicates a better perfor-
mance of MC-UoS learning. Also, if learned subspaces are closer to
the ground truth, they are expected to have a good representation per-
formance of complete test data. A good measure in this regard would
be the mean of relative reconstruction errors of the test samples us-
ing learned subspaces. To be specific, we represent every signal
ytei ∈ Y te such that ytei ≈ Dĩα

te
i where ĩ = arg maxk ‖DT

k y
te
i ‖22

and αtei = DT
ĩ
ytei . The relative reconstruction error of xtei ∈ Xte

is then calculated as
‖xtei −Dĩ

αte
i ‖

2
2

‖xtei ‖
2
2

.
It can be observed from Fig. 1(a) and Fig. 1(b) that (i) Mi-

CUSaL learns a better MC-UoS in terms of smaller relative errors
of test data and davg’s, and (ii) MiCUSaL degrades gracefully
when noise power increases. Similarly, for rMiCUSaL, we can infer
from Fig. 1(c) and Fig. 1(d) that (i) rMiCUSaL also outperforms
k-GROUSE and (ii) for a fixed noise power, when the number of
missing entries increases, the performance of rMiCUSaL degrades
less compared to k-GROUSE. SSC fills in the missing entries with
random values, which results in a poor performance in terms of large
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Fig. 2. Comparison of MC-UoS learning performance on face
dataset. (a) and (b) show the relative errors for complete and missing
data cases in the absence of outliers. (c) and (d) show the relative er-
rors for complete and missing data cases in the presence of outliers.

relative errors and davg’s (always above 0.75 and 0.90 respectively).
Plots for SSC are omitted here because large gap exists between the
performance of SSC and two other methods for the case of missing
training data.

Experiments with Real Data: Finally, we study the perfor-
mance of our methods on the Extended Yale B dataset [34]. By fix-
ing the pose of one person and varying illumination, the set of images
of one subject can be well represented by a union of 9-dimensional
subspaces [35]. Here we assume the resulting images of a subject lie
close to an MC-UoS with K = 2 and s = 9.

In our experiments, we focus on a collection of images of subject
8 and subsample the images to 48 × 42 pixels; thus n = 2016.
We choose 54 images with good lighting conditions and all these
samples are vectorized and normalized to have unit `2 norms. We
randomly select half of them as X and the remaining ones belong to
Xte. Fig. 2(a) and Fig. 2(b) show the relative reconstruction errors
of test samples and we see both MiCUSaL and rMiCUSaL learn a
better MC-UoS since they give rise to smaller relative errors.

We also study the scenario in which there exist some outliers
in the training set. To do so, we randomly select 30 images from
subject 8 and add another 10 unit `2-norm samples from subjects 5
and 13 (5 samples each), formingX ∈ Rn×40. The test setXte now
consists of the remaining 24 samples of subject 8. We again provide
evidence that our methods yield better representation performance
in this setting and we refer the reader to Fig. 2(c) and Fig. 2(d) for a
validation of this claim (plots for SSC are again omitted here because
of its poor performance on missing data).

6. CONCLUSION AND FUTURE WORK

In this paper, we motivated and introduced a framework for data-
adaptive learning of a metric-constrained union-of-subspaces model.
Experimental results on both synthetic and real data indicate the ef-
fectiveness and robustness of our methods in the presence of noise,
outliers and missing data. Our future work includes the estimation of
the number and dimensions of the subspaces from the training data.
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