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ABSTRACT

The effect of off-grid atoms has become the prominent prob-

lem in application of the Compressed Sensing (CS) tech-

niques to the cases where there is an underlying continuous

parametrization. In this work, we develop a generalizing

CS framework which shows that sampling to a finite grid is

not necessary toward compressive estimation. We propose

an alternative procedure over infinite dictionaries, which we

show to be theoretically consistent in many cases of interest

and then propose a robust implementation. We illustrate the

general properties of our technique in some difficult practical

instances of frequency estimation.

1. INTRODUCTION

Compressed Sensing (CS) has appeared as a general solu-

tion to many problems of seemingly different nature, essen-

tially reflecting a common linear structure as well as sparsity

[1]. For that, the key target of many pioneering CS studies

has been to develop a unified numerically feasible technique,

which at the same time enjoys good theoretical properties[2,

3]. Although the advent of the convex optimization tech-

niques, e.g. the interior point [4] and the theoretical ma-

chinery of the Restricted Isometry Property (RIP) [5, 2] re-

markably enhanced the development [6], recent practical dif-

ficulties such as the off-grid atom problem call for further im-

provement. On the other hand, relying on the RIP condition

has led to misunderstand the off-grid atom problem, which

also stands for some skeptical views. In this study, we aim

to reach the above mentioned original goal of CS by theoret-

ically demonstrating the possibility of nearly optimal atomic

decomposition over a continuum without discretization, and

further providing a numerically stable implementation.

The general CS approach deals with the so called atomic

decomposition problem; Given a set of data and a set of candi-

date atom vectors, what is the unique smallest set of the atoms

to which the data can be linearly decomposed? The different

translations of atomic decomposition include numerous prac-

tical problems, most of which essentially concern a contin-

uum of atoms [7, 8, 9]. However, the main body of the CS

research deals with a finite number of candidates and the con-

tinuous cases of interest seem to stay out of the scope of CS.

This is traditionally responded by finitely sampling the set of

atoms and creating a so called atom grid, which brings up am-

biguity when the true atomic decomposition (data representa-

tion) includes off-grid atoms [10]. This is recently addressed

in [11, 12], with a solution that generally suppresses but does

not eliminate the effect.

Regarding the off-grid element problem, one natural so-

lution is to improve the sampling to provide a sufficiently

”dense” grid to meet the practical specifications. However,

relative to the gained accuracy, the additional computational

burden is high and the classical convex methods are fre-

quently reported to run into numerical problems. On the

other hand, the RIP-based theory also restricts the grid size,

so that it seems straightforward to draw the conclusion that

the oversampling strategy fundamentally fails by reaching

the RIP limit. However, it is seen that the practical oversam-

pling failure bound is far above the best known resolvable

RIP level. This suggests that the RIP may be improved. As

we later show, it is in fact possible to include an arbitrary

grid size in an alternative theoretical framework, so that the

numerical problems may not be related to the theoretical

properties of the method.

Finally, we show the possibility of overcoming the nu-

merical instability by proposing an alternative optimization

procedure considering an equivalent dual form of the Basis

Pursuit method [1], called the noiseless global matched filter.

This form surprisingly concerns a finite dimensional convex

optimization, while giving continuous estimates. We provide

some further both theoretical and empirical results suggest-

ing the robustness and accuracy of the proposed grid-less CS

approach.

2. MATHEMATICAL MODELING

In this part, we introduce the problem of atomic decomposi-

tion and its solution through BP. Then, we introduce an exact

optimality condition for BP which will be used to develop our

theory. Consider a set A ⊂ C
m of atoms, which we may also

refer to as the dictionary and a vector x ∈ Cm. Then it is said

that x can be decomposed to a1,a2, . . . ,an ∈ A when there

exist amplitudes s1, s2, . . . , sn ∈ C such that

x =

n
∑

k=1

skan, (1)

where the order n can be arbitrary. Such an atomic decom-

position is called ideal if there is no smaller number of atoms
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n in A to which x can be decomposed. Finally, the ideal de-

composition to n or fewer atoms is always unique if every

subset of 2n atoms is linearly independent [13]. This does

not necessarily mean that A is finite. For example, it is well

known that the Fourier atoms given by

A = {[1 ejφ e2jφ . . . ej(m−1)φ]T | 0 ≤ φ < 2π} (2)

give unique ideal decomposition when 2n ≤ m. In this case

the ideal decomposition is equivalent to frequency estimation

and the condition 2n ≤ m leads to the Nyquist Theorem and

its generalization [14]. As seen, the abstract formalism has a

great potential in providing general results.

Although in certain special cases the problem of ideal de-

composition may be solved by algebraic techniques, e.g. [15],

the general case remains difficult, especially when m and n
grow. When A is finite, i.e. A = {a1,a2, . . . ,aN}, this can

be solved by the proximal convex optimization, known as Ba-

sis Pursuit (BP) and given by

min
s∈CN

N
∑

k=1

|sk|

s.t.

x = As (3)

where A = [a1 a2 . . .aN ] and s = [s1 s2 . . . sN ]T . As the

solution of BP is shown to include few non-zero elements,

it automatically selects the atoms corresponding to non zero

elements as the desired decomposition.

Under which conditions does the solution of BP coincide

with the ideal atomic decomposition? We are going to explain

this in details in the sequel. However, it should first be noted

that the question has been also the center of CS studies for a

long time, and is partly answered by the following so called

RIP condition [16]:

If the finite dictionary A is such that every choice of 2n
atoms remains almost isometric (i.e. almost orthogonal), in

the case of existing an ideal atomic decomposition to n or less

number of atoms, the solution of BP is the ideal decomposi-

tion.

To avoid confusion, we omit more mathematical details.

Still, it is simple to see that the BP defined in (3) and the

above RIP condition are exclusive to the finite dictionary case

as otherwise the summation in (3) is not always well defined

and A also necessarily includes arbitrarily coherent atoms vi-

olating the RIP. Yet, as we show later, BP can be generalized

to include infinite dictionaries with a guaranteed recovery re-

sult. For that, we first need to express some fundamental facts

about BP.

Let us write down the so called Karush-Kuhn-Tucker

(KKT) condition, which characterizes the solution of (3). As

it contains equality constraints a vector of dual parameters

z ∈ Cm should be considered. Then, the KKT Theorem [17]

leads to

aH
k z + ξk = 0 k = 1, 2, . . . , N (4)

where ξk ∈ ∂|sk| is a subgradient. Note that the subgradi-

ents of the absolute function |sk| are characterized by ξk =
sk/|sk| when sk 6= 0 and |ξk| ≤ 1 when sk = 0. Thus, after

some simple manipulations the KKT condition in (4) implies

that a vector s ∈ C
N is an optimal point of (3) if and only if

x = As and there exists a vector z ∈ Cm such that

∀k ∈ {1, 2, . . . , N};

{

|aH
k z| ≤ 1 sk = 0

aH
k z = γk = sk

|sk|
sk 6= 0

(5)

For example, suppose that the vectors a1,a2, . . . ,an belong-

ing to a finite dictionary A ideally decompose a vector x as

in (1). Remembering that the unemployed atoms are accom-

panied by zero amplitudes s = 0 in BP, from (5) we conclude

the following fact.

For BP to recover an ideal decomposition as in (1),

there must exist a vector z such that aH
k z = sk/|sk| for

k = 1, 2, . . . , n and |aHz| ≤ 1 for any other unemployed

atom a ∈ A. We will refer to this as the Dual Null Space

Property (DNSP).

Note that as aH
k z = sk/|sk| implies |aH

k z| ≤ 1, the con-

dition |aHz| ≤ 1 can be equivalently assumed for all atoms.

How does DNSP result in RIP? As seen, the possibility of re-

covering an ideal decomposition depends on finding a proper

dual vector z satisfying the DNSP. Then, restricting z to cer-

tain families results in a tighter recovery bound. In [5] for

example, it is shown that if RIP holds DNSP is satisfied in

every possible sparse case by a simple selection procedure of

z. Thus, RIP implies perfect recovery. However, in certain

individual cases, it is possible to select z differently, resulting

in perfect recovery beyond the prediction of RIP.

3. NOISELESS GLOBAL MATCHED FILTER

The results in the previous section are valid only for the fi-

nite dictionary case, but it is seen that the DNSP is also well

defined and can be verified in the case of infinite dictionar-

ies. However, the connection to BP is established only when

A is finite. On the other hand, the interesting properties of

BP are equivalently dedicated to the DNSP. Thus, providing a

procedure over infinite dictionaries that terminates only at the

points satisfying DNSP will retrieve the desired properties in

the cases of interest. There is an optimization expression over

infinite dictionaries which results in DNSP as the optimality

condition as follows:

max
z∈Cm

ℜ(zHx)

s.t.

∀a ∈ A; |aHz| ≤ 1 (6)

To respect and remind the important and well connected work

in [18], we will refer to (6) as the noiseless Global Matched

Filter (NL-GMF).
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It is easy to conclude DNSP for the above NL-GMF

scheme. Note that there exists an infinite number of inequal-

ity constraints |aHz| ≤ 1, each identified by an atom a ∈ A.

Assume that for the optimal z vector the bound constraints,

i.e. the ones holding equality instead of inequality, are given

by a1,a2, . . . ,an. Then, the KKT condition implies that

there exist corresponding positive real numbers r1, r2, . . . , rn

such that

x =

n
∑

k=1

rk

aH
k z

|aH
k z|

ak (7)

Defining sk = rka
H
k z/|aH

k z| it is seen that the resulting

vector z satisfies DNSP as sk/|sk| = aH
k z/|aH

k z| = aH
k z.

Also, note that if DNSP is satisfied for a given case with

an infinite dictionary A, the same parameters satisfy it for

a sub-dictionary B ⊂ A if the former resulting decomposi-

tion atoms are included in B. In other words, we have the

following:

For any vector x, the solution of NL-GMF coincides with

the solution of BP over a finite grid if the former NL-GMF

atom estimates are on-grid.

How can (6) be implemented without discretization? To

answer this question we propose the following local search

algorithm which we show to converge to the NL-GMF global

optimal point characterized by DNSP. For simplicity, we as-

sume that the atoms are indexed by a continuous real param-

eter ω, i.e. A = {a(ω) | 0 ≤ ω < 1}, where a(ω) is a

differentiable function. We note in passing that the constraint

(6) resembles an equi-ripple filter design, a fact that can be

used to inspire a search algorithm.

3.1. Implementing GMF

In simple words, each z updating iteration consists of find-

ing the atoms violating the constraint in (6) and finding an

infinitesimal update which increases the cost ℜ(zHx), while

suppressing the spectrum p(ω) = |aH(ω)z| at the violation

points. Note that the set of violation points, recognized by

|aH(ω)z| > 1, generally consists of a number of intervals.

However, as each interval contains a finite number of peak

points, it suffices to suppress the spectrum at the violating

peak points. The following is an algorithm sketch:

• Initialize by an arbitrary z vector and iteratively follow

the following procedure:

• Recognize the peak points (local maxima) in the spec-

trum p(ω) = |aH(ω)z|.

• Select the peak points ω1, ω2, . . . at which the spectrum

p(ω) is greater than 1.

• Find a feasible ascend direction δ, such that updating z

to z + ǫδ for a sufficiently small value of ǫ decreases

p(ωk) and increases ℜ(zHx).

we subsequently explain each step in details.

3.1.1. Finding all peaks

As the spectrum p(ω) contains multiple local maxima,

we may start by searching over a sufficiently dense grid

Ω = {ωg
1 , ωg

2 , . . . , ωg
N} and later update the estimates by

local search. We employ a simple but numerically stable

iterative bisection scheme with the following iteration:

• Compute p(ωg
1), p(ωg

2), . . . , p(ωg
N) and select peak

points ωg
i1

, ωg
i2

, . . . , ωg
ir

obeying p(ωg
ik

) ≥ p(ωg
ik+1)

and p(ωg
ik

) ≥ p(ωg
ik−1). Set the estimate upper and

lower bounds ωh
k = ωg

ik+1 and ωl
k = ωg

ik−1 respec-

tively.

• Set the estimates ωc
k = (ωh

k + ωl
k)/2.

• Compute the sign of the gradient at every ωc
k given by

the sign of ℜ(aH(ωc
k)zzHda(ωc

k)/dω).

• For the points ωk with a positive gradient set ωl
k = ωc

k.

For the others, take ωh
k = ωc

k.

3.1.2. Finding a feasible ascend direction

Once the peak points ωc
1, ω

c
2, . . . are identified by the above

procedure, its subset ω1, ω2, . . . , ωn of all the violating peaks,

given by p(ωk) > 1 is recognized. Then, we look for a direc-

tion δ such that updating to z + ǫδ for a sufficiently small

value of ǫ decreases p(ωk) and increases ℜ(zHx). This leads

to

∀1 ≤ k ≤ n ∆p(ωk) < 0 → ℜ(zHa(ωk)aH(ωk)δ) < 0
(8)

Now we bring the above linear constraints into a standard

real-valued form. Defining bk =
(

aH(ωk)z
)

a(ωk) and de-

composing to real and imaginary parts as bk = br
k + jbm

k

and δk = δ
r + jδm, we may re-write (8) as

∀1 ≤ k ≤ n (br
k)T

δ
r + (bm

k )T
δ

m < 0 (9)

which may be denoted by WTd ≺ 0 where ≺ denotes ele-

mentwise inequality, W = [w1 w2 . . .wn] is the collection

of wk =
[

(br
k)T (bm

k )T
]T

and d =
[

(δr)T (δm)T
]T

. In

other words, there exist an all-negative vector r such that

WTd = r ≺ 0 (10)

This is called the feasibility cone. In a similar manner, the

condition that the NL-GMF cost should be increased can also

be written in a standard form as

∆ℜ(zHx) > 0 → ℜ(δHx) > 0 → yT d > 0 (11)

where denoting x = xr+jxm, we define y = [(xr)T (xm)T ]T .

Finding a vector d satisfying (10) and (11) is a well-

studied problem which can be solved by classical iterative
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techniques. However, to reduce complexity, we avoid ex-

tra iterations by introducing the following technique. The

general solution to (10) is obtained as

d = W(WT W)−1r + n (12)

where n is arbitrary vector belonging to the null space of WT ,

i.e. WTn = 0. From, (12), the condition of (11) simplifies to

yT W(WT W)−1r + yT n > 0 (13)

To ensure the above, we select n and r so that each term re-

mains positive. In order to increase coherence yT n, The vec-

tor n is simply chosen to be the orthogonal projection of y

into the orthogonal complement of the range space of W,

n = y − W(WTW)−1WTy (14)

To select r, note that the term yT W(WT W)−1r can be ex-

panded as
∑

i

riηi where ηi and ri are the ith element of the

vectors (WT W)−1WTy and r respectively. Thus, the con-

dition is guaranteed if

ri =

{

0 ηi ≥ 0
ηi ηi < 0

(15)

In summary once the violating peaks are found, the ascend

direction δ is computed by the following method

• Compute matrices W and y from the atoms a(ωk) and

the data x respectively.

• Compute n and r from (14) and (15) respectively.

• Compute d and δ from (12).

Each iteration is completed by updating z to z + ǫδ for a

small step size ǫ. Thus, the algorithm stops only when d = 0,

or more practically when it is small enough. Then, from the

construction, y lies in the range space of W (as n = 0) and

the spanning components ηi are all negative. Thus, (13) may

not have any solution and there does not exist any feasible

ascend direction. From Farka’s lemma [17], we conclude that

the DNSP holds. This means that even though suboptimal in

convergence speed, the proposed algorithm can only converge

to the solution of the NL-GMF.

4. RESULTS

Due to lack of space, we only include some preliminary re-

sults of implementing NL-GMF for an example case of fre-

quency estimation, given in (2). In all cases the step size

ǫ = .001 and 1000 iterations are considered. In the first sce-

nario, we took m = 4, which gives a highly correlated atom

dictionary, and chose two components at ω = 0, 1/8 in terms

of the normalized frequency. As seen in Figure 1, the BP im-

plementation by the CVX toolbox can not totally converge
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Fig. 1. The frequency spectrum for the NL-GMF compared
to BP.
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Fig. 2. The NL-GMF mean squared error in different SNRs.

and stops at a close non-sparse point. However, NL-GMF

gives peaks exactly at the true points despite high correlation.

In a different scenario we considered a noisy observation of

two deterministic components s1 = s2 = 1 with m = 15
samples at the same frequencies as the previous experiment.

Figure 2 shows the Mean Square Error (MSE) for 100 trials

at each SNR level. As seen, when SNR decreases to 25 dB,

NL-GMF is not statistically efficient anymore, as some ex-

tra peaks appear in the spectrum. We leave this discussion to

future work.

5. CONCLUSION

In this work, we proposed a CS recovery technique over in-

finite and continuous dictionaries, which we refer to as the

noiseless global matched filter. We reviewed its theoretical

properties and its deep relation to BP, which suggests that

NL-GMF may perfectly recover the ideal atomic decomposi-

tion in many cases of interest, modifying RIP to the DNSP.

We then proposed a NL-GMF numerical implementation

which we showed to stably converge. We finally demon-

strated the properties of NL-GMF through simulation. The

results showed that NL-GMF may converge and provide sat-

isfactory results even when the original BP technique with a

convex optimization is numerically deficient. Furthermore,

the results showed that NL-GMF may be reliably used for

noisy recovery at a high enough SNR. However, it fails when

SNR decreases as some false peaks appear in the spectrum.

This can be corrected by modifying the NL-GMF method,

which is postponed to future studies.
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