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ABSTRACT

In this paper, we relax a commonly-used assumption about a
class of nonstationary random processes composed of mod-
ulated wide-sense stationary random processes: that the fun-
damental frequency of the modulator is stationary within the
analysis window. To compensate for the relaxation of this
assumption, we define the generalized DEMON (“demodu-
lated noise”) spectrum representing modulation frequency,
which we use to increase the coherence time of such signals.
Increased coherence time means longer analysis windows,
which provides higher SNR estimators. We use the example
of detection on both synthetic and real-world passive sonar
signals to demonstrate this increase.

Index Terms— DEMON spectrum, coherence time, non-
stationary random processes, spectral impropriety, modula-
tion frequency

1. INTRODUCTION AND RELATION TO PRIOR
WORK

We consider a class of nonstationary signals that are com-
posed of a wide-sense stationary (WSS) random process w(t)
modulated by a deterministic, quasi-periodic modulatorm(t):
x(t) = m(t)w(t). Such signals abound in communications
and are also useful for modeling real-world signals such as
machinery noise, particularly propeller noise in passive sonar.

Using the assumptions that w(t) is white and that m(t) =∑∞
k=0 ake

−j2πkf0t, Lourens and du Preez [1] demonstrated
that the DEMON spectrum (termed “DEMON” in the sonar
literature for “demodulated noise”, but can also be used for
general analysis of modulation frequency) is an approximate
maximum-likelihood estimator (MLE) of the constant funda-
mental frequency of modulation, f0. Clark et al. [2] demon-
strated that for real-world sonar signals, w(t) is often colored,
and relaxed the assumption that w(t) is white. They proposed
a multiband version of the DEMON spectrum, which showed
improved performance. Tao et al. [3] relaxed the assumption
of constant fundamental frequency, assuming a linear chirp
model for m(t), and derived a MLE for propeller accelera-
tion rate.

Similar approaches have been taken recently to modeling
acoustic frequency variation, with most of the methods fo-
cused on speech processing. Omer and Torrésani [4] consid-
ered a model that consists of a frequency-modulated complex-
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valued WSS process and derived an approximate ML estima-
tor using Gabor frames. Kaewtip et al. [5] used time-warping
to achieve a similar effect and used the approach to improve
automatic speech recognition. Kepési and Weruaga [6] used
the fan-chirp transform to fit linear instantaneous frequency
(IF) trajectories to short frames of voiced speech.

Our approach differs from these acoustic frequency meth-
ods in two ways: first, we are looking at modulation fre-
quency instead of acoustic frequency, and second, our method
allows for an arbitrary model of trajectories (i.e., not just con-
stant or linear). Furthermore, our ultimate goal differs some-
what: rather than examine estimator performance, our goal is
extension of the coherence time.

In this paper, we generalize the DEMON spectrum to al-
low for frequency variation in the modulator itself. We also
show the relationship between the DEMON spectrum and the
theory of spectral impropriety, namely that the DEMON spec-
trum is equivalent to a scaled spectral impropriety coefficient.
Incorporating a model of the frequency variation into a GLRT
detection statistic increases the coherence time of the estima-
tor, allowing for the use of longer analysis windows and thus
providing greater SNR.

2. BACKGROUND

This section covers the definition of the signal model we are
interested in, the DEMON spectrum, its connection to spec-
tral impropriety, and the generalized DEMON spectrum.

2.1. Signal model

In this paper, we will consider a signal of the form

x(t) = m(t)w(t), (1)

where m(t) is a deterministic, periodic modulator of the form

m(t) = Re

{
K∑
k=1

ak exp (j2πkφ0(t))

}
, (2)

with ak ∈ C and φ0(t) =
∫ t

0
f0(w)dw. f0(t) is the slowly

time-varying fundamental instantaneous frequency (IF), and
w(t) is a wide-sense stationary (WSS) random process. The
signal model in (1) will be referred to as amplitude-modulated
wide-sense stationary (AM-WSS).

The signal in (1) is a nonstationary random process, be-
cause its time-varying autocovariance function is

rxx(t, τ) = E [x(t)x(t− τ)] = m(t)m(t− τ)rww(τ). (3)
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The m(t)m(t− τ) factor causes the autocovariance function
to vary over time. If f0(t) is constant over all time, (1) is a
periodically-correlated [7], or cyclostationary [8] signal. If
f0(t) is such that m(t) is an almost-periodic function, (1) is
an almost-cyclostationary signal [9].

2.2. DEMON spectrum and modulation frequency

The DEMON spectrum is a commonly-used tool in the sonar
community to examine the frequency content of m(t) (that
is, the modulation frequency content of x(t)). The DEMON
spectrum of a real-valued signal x(t) is the Fourier transform
of the squared signal:

Dx(f) =

∫
x2(t)e−j2πftdt. (4)

The squaring operation is a nonlinearity that performs a de-
modulation operation (essentially demodulating the signal
with itself). If m(t) has constant fundamental frequency f0

and consists of harmonics, |Dx(f)| exhibits spectral peaks at
multiples of f0.

If m(t) has frequency content that varies over time, a
time-variant version of the DEMON spectrum can be used
for analysis. The time-varying DEMON spectrum is defined
as follows:

Dx(d, f) =

∫
x2
d(t)e

−j2πftdt, (5)

with xd(t) = g(t)x(t − dT ) is the dth frame of x(t), where
g(t) is a data taper of duration T . Just as a short-time Fourier
transform (STFT) is used to examine time-varying acoustic
frequency content, the time-varying DEMON spectrum is
used to examine time-varying modulation frequency content.

2.3. Connection to spectral impropriety

Clark et al. examined the spectral impropriety of real-valued
signals in [10]. Here we do the same, though with a different
formulation.

The Cramér-Loève spectral representation of a random
process x(t) is [11]

x(t) =

∫
ej2πftdξ(f), (6)

where dξ(f) is a complex-valued spectral increment process.
Since dξ(f) is complex valued, it requires two second-order
statistics [12]. Thus, its increments have Hermitian and com-
plementary correlations [12, p 199]:

E[dξ(f1)dξ
∗(f2)] = Sxx(f1, f2)df1df2 (7)

E[dξ(f1)dξ(f2)] = S̃xx(f1, f2)df1df2. (8)

There is some ambiguity as to how the complementary
spectral correlation can be defined. Schreier and Scharf [12]
define S̃xx(f1, f2)df1df2 = E[dξ(f1)dξ(−f2)]. Napolitano
[9, (1.13)] defines S̃xx(f1, f2) as we have done in (8), and
we define it as such here because of the elegant expression it
yields.

If x(t) is a finite energy signal, we can say that dξ(f) =
X(f)df , where X(f) is the Fourier transform of x(t). Us-
ing this assumption, Clark observed [13, (3.12)] that if x(t) is
AM-WSS and w(t) is white noise, the complementary spec-
tral correlation S̃xx(f1, f2) = E [X(f1)X(f2)] is

S̃xx(f1, f2) = σ2
w

∫
m2(t)e−j2π(f1+f2)t. (9)

If x(t) is real-valued and thus X∗(f) = X(−f), the Her-
mitian spectral correlation Sxx(f1, f2) = E [X(f1)X

∗(f2)]
is

Sxx(f1, f2) = σ2
w

∫
m2(t)e−j2π(f1−f2)t. (10)

If we assume that the complex-valued random vari-
ables X(f) are zero mean, then the spectral correlations
S̃xx(f1, f2) and Sxx(f1, f2) are equal to the spectral covari-
ances R̃xx(f1, f2) andRxx(f1, f2). IfX(f) are distributed as
complex-valued Gaussians, then the impropriety coefficient
[12] of X(f) is defined as

ρX(f) =
R̃xx(f, f)

Rxx(f, f)
=
σ2
w

∫
m2(t)e−j2π2ftdt

σ2
w

∫
m2(t)dt

. (11)

Equation (11) is interesting, because it provides a connec-
tion between spectral impropriety and the DEMON spectrum.
That is, when x(t) is a real-valued, finite energy, AM-WSS
signal and w(t) is white noise, the expected value of the DE-
MON spectrum of x(t) at double frequencies, E [Dx(2f)], is
essentially an unnormalized spectral impropriety coefficient
scaled by ‖m(t)‖22.

2.4. Generalized DEMON spectrum

Most prior work has assumed that f0(t) = f0; that is, the
fundamental modulation frequency is constant over the dura-
tion of the signal x(t), and thus m(t) is perfectly periodic.
Real-world data, however, often has time-varying modulation
frequency, and thus rarely has perfectly periodic modulation.

Time-varying frequency content in m(t) smears energy
in the DEMON spectrum. This effect is illustrated in figure
1, where the DEMON spectrum of two types of AM-WSS
signals are shown. For both AM-WSS signals, w(t) is unit-
variance white noise. For the pure-tone case, m(t) is a sinu-
soid with f0 = 10 Hz. This results in a narrow peak in the
DEMON spectrum at 2f0 = 20 Hz. In the second case, m(t)
is a frequency-modulated (FM) tone with starting frequency
of 10 Hz and total frequency change of 5 Hz over the dura-
tion. Because of the FM in m(t), the DEMON spectrum is
smeared out, resulting in a reduced magnitude at the spectral
location corresponding 2f0 = 20 Hz.

To correct the “smearing” effect caused by time-varying
frequency content in m(t), a generalized DEMON spectrum
can be defined that is more coherent with the signal. If the
DEMON spectrum is taken along an instantaneous frequency
trajectory that is approximately equal to the true instantaneous
frequency of m(t), then the peaks at multiples of this trajec-
tory in the generalized DEMON spectrum will be sharper and
maximized. For example, using the true instantaneous fre-
quency trajectory, the generalized DEMON spectrum of the
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Fig. 1. Illustration of smearing of the DEMON spectrum
whenm(t) is a frequency-modulated tone. In both cases w(t)
is white noise.

AM-WSS when m(t) an FM tone would be equal to the blue
line in figure 1, which would restore the concentrated peak at
20 Hz.

Using the connection to spectral impropriety from §2.3,
the smearing in the DEMON spectrum also corresponds to
smearing of the spectral impropriety. Thus, if a measurement
of spectral impropriety does not account for time-varying
modulation frequency, the estimate will be smeared out
across adjacent frequencies and will be reduced. This in-
dicates the importance of coherence when measuring spectral
impropriety.

Formally, define a generalized DEMON spectrum along
an IF trajectory f(t), where f(t) is a function over the dura-
tion T of x(t). Let φ(t) =

∫ t
0
f(w)dw be the instantaneous

phase corresponding to the trajectory f(t). Then the general-
ized DEMON spectrum is defined to be

D(G)
x (φ) =

∫
x2(t)e−j2πφ(t)dt. (12)

This formulation can use an arbitrary model of trajecto-
ries. However, to simplify derivation and implementation, the
remainder of this paper will use a linear model of IF trajec-
tories, where f(t) = fc + βt. In this model, fc is a center
frequency, and β is a chirp rate.

3. DETECTION OF AM-WSS SIGNALS

To illustrate the advantage of using the generalized DEMON
spectrum, we consider the problem of detecting an AM-WSS
signal x(t) embedded in additive white Gaussian noise v(t).
The noisy measurements are

y(t) = x(t) + v(t) = m(t)w(t) + v(t). (13)

Let the variance of v(t) be σ2
v and letw(t) be white noise with

variance 1. Assume m(t), w(t), and v(t) are zero-mean.
The following derivation represents discrete data sampled

at fs as N -length vectors, for example y where the nth ele-
ment is y[n] for n ∈ [0, N − 1]. Here, we have the following
two hypotheses:

H0 : y = v
H1 : y = x+ v (14)

We will use a generalized likelihood ratio test (GLRT)
[14] as a detection statistic, which is defined as

L(y) ∆
=

maxθ1 p(y; θ1,H1)

maxθ0 p(y; θ0,H0)
(15)

where θi are the unknown parameters under the hypothesis
Hi. Here, under H1, we take θ1 to be the parameters that
specify f0(t). UnderH0, we have no unknown parameters.

If we examine the natural log of (15), we get

lnL(y) = lnmax
θ1

p(y; θ1,H1)− ln p(y;H0). (16)

Since ln(·) is a monotonically increasing function, we can
push the max outside the log. Using the assumptionm2[n]�
σ2
v for all n, and taking p(·) to be a Gaussian distribution,

simplification of (16) yields the following:

lnL(y) ≈max
θ1

[
−1

2

N−1∑
n=0

ln

(
1 +

m2[n]

σ2
v

)
. . .

+
1

2 (σ2
v)

2

N−1∑
n=0

m2[n]y2[n]

]
. (17)

The first term inside the max of (17) can be approximated by
−N2 SNR using the assumption that m

2[n]
σ2
v
� 1 for all n and

the Taylor series expansion for ln(1+x). Since−N2 SNR is a
constant term, it can be pushed outside the max and absorbed
into the likelihood threshold. The 1

2(σ2
v)2

scaling factor on
the second term in (17) is also data-independent and can be
absorbed into the likelihood threshold. Thus, we can define
the modified log-GLRT

L(y)
∆
= max

θ1

N−1∑
n=0

m2[n]y2[n]. (18)

Under the conventional assumption that f0(t) = f0,
Lourens and du Preez derived an expression for (18) [1,
(17)-(21)] in terms of the DEMON spectrum, which yields

L(y) = max
f0

∞∑
k=0

|Dy(kf0)|2, (19)

whereDy(f) =
∑N−1
n=0 y

2[n]e−j2πf
n
fs is the discrete version

of (4). Likewise, using a linear model f0(t) = fc + βt, Tao
et al. derived a similar expression for (18) in [3], which we
can write in terms of the discrete version of the generalized
DEMON spectrum (12): D(G)

y (φ) =
∑N−1
n=0 y

2[n]e−j2πφ(t),
where φ(t) is evaluated at t = n

fs
, yielding

L(G)(y) = max
fc,β

∞∑
k=0

∣∣∣∣D(G)
y

(
k

[
fc +

1

2
βt

]
t

)∣∣∣∣2 . (20)

Note that the k=0 terms in (19) and (20) are simply ‖y‖22,
so they are constant terms that are not affected by θ1 and can
thus be moved outside the maximization.

4. EXAMPLES

We now consider the effect of the length of the analysis win-
dow on detection performance and demonstrate that when
fundamental modulation frequency varies within a window,
L(G)(y) ≥ L(y) for both synthetic and real data. This result
shows that our proposed method increases the coherence time
and thus allows longer analysis windows.
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4.1. Synthetic data

A Monte Carlo analysis using synthetic data is performed.
Realistic parameters that correspond to real-world passive
sonar signals are used. The WSS noise carrier w(t) is unit-
variance white noise. The modulator m(t) has 4 harmonics,
center frequency fc = 2 Hz, and we consider four possible
chirp rates spaced equally from 0.05 to 0.2 Hz/s. For each
chirp rate, we will consider a range of analysis window du-
rations T ∈ [3, 8] seconds. The sampling rate is fs = 4
kHz.

For each T , L(y) and L(G)(y) are computed and aver-
aged over 400 trials, 100 trials for each β. Figure 2 shows the
results. Notice that L(G)(y) remains approximately the same
for all β for all analysis durations T , while L(y) decreases as
T increases. The difference in performance between L(y)
and L(G)(y) happens because L(G)(y) accounts for linear
frequency variations of m(t), which means L(G)(y) is coher-
ent with the signal over a longer duration. Said another way,
L(G)(y) adds up the concentrated, higher-amplitude peaks
produced by the generalized DEMON spectrum, while L(y)
adds up the smeared, lower-amplitude peaks of the conven-
tional DEMON spectrum.
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Fig. 2. Monte Carlo experiment with synthetic data demon-
strating increased coherence time using L(G)(y), the log-
GLRT for our proposed model, versus L(y), the log-GLRT
for the conventional model.

4.2. Real-world sonar data

For a real-world example, we consider propeller noise that
exhibits time-varying frequency content in its modulator. The
example is a 12 second recording z of a Zodiac boat starting
up its engine and moving away1. The time-varying DEMON
spectrum given by (5) of this signal is shown in figure 3. The
first 6 seconds are labeled as “startup”, during which the pro-
peller rate is increasing as the boat starts its engine and moves
away. During the last 6 seconds, labeled “steady”, the Zodiac
boat is underway and the propeller rate is relatively constant.
We choose this example because the startup portion illustrates
a real-world case when f0(t) is varying over the analysis win-
dow, while the steady portion illustrates the conventional as-
sumption that f0(t) is constant over the analysis window.

Figure 4 shows a comparison betweenL(zd) andL(G)(zd)
for varying analysis window durations T . The expression zd
is the dth frame of duration T of z. The analysis windows
are not overlapping. Notice that for all T and d, and for

1Thanks to Brad Hanson and the NOAA Northwest Fisheries Science
Center Marine Mammal Program for providing this data.
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Fig. 3. Time-varying DEMON spectrum of Zodiac boat data.
The startup and steady portions are labeled. Notice the in-
creasing modulation frequency in the startup portion.
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Fig. 4. Detection statistics for real-world Zodiac boat data
using different analysis window lengths. Analysis windows
are non-overlapping. Notice that the statistic using the pro-
posed generalized DEMON spectrum, L(G)(zd), is consis-
tently higher than the conventional statistic L(zd), especially
as the analysis window duration T increases.

both startup and steady, L(G)(zd) consistently achieves a
higher value than L(zd). During startup, L(G)(zd) is espe-
cially greater (by over 6dB) using a long analysis window
(T = 6s), because the propeller rate is far from constant.

5. DISCUSSION AND CONCLUSION

In this paper, we have examined a particular class of non-
stationary signals, AM-WSS, and how its spectral statistics
relate to the DEMON spectrum. Conventional approaches
assume that the modulation frequency content is stationary
within the window. However, this assumption often does not
hold. By accounting for the variation, longer analysis win-
dows can be used, providing higher SNR estimators.

We presented a method to extend the coherence time of
such signals using the generalized DEMON spectrum. We
validated this method using a linear model for modulation fre-
quency trajectories to perform detection on synthetic data in
a Monte Carlo experiment as well as on real-world passive
sonar data. On real-world passive sonar data, our proposed
method achieved up to a 6dB gain in the detection statistic
over the conventional method.

Future work will investigate other models for time-
varying modulation frequency (such as quadratic and higher-
order polynomials), applying the method to speech signals to
extend analysis windows, and incorporating our method into
other statistical estimators used in beamforming, detection,
and classification.
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