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ABSTRACT

Convex relaxations for sparse representation problems, which aim
to find sparse solutions to systems of equations, have enabled a va-
riety of exciting applications in high-dimensional settings. Yet, with
dimensions large enough, even these convex formulations become
prohibitively expensive. Screening methods attempt to use duality
theory to dramatically reduce the size of the optimization problem
through easily computable certificates that many of the variables
must be zero in the optimal solution. In this paper we consider
learning sparse classification rules via Boolean compressed sensing
and develop screening procedures that can significantly reduce the
size of the resulting linear program. Boolean compressed sensing
deals with systems of Boolean equations (instead of linear equations
in traditional compressed sensing); we develop screening methods
specifically for this setting. We demonstrate the effectiveness of our
screening rules on several real-world classification data sets.

Index Terms— Linear programming duality, rule learning,
screening, sparse signal approximation

1. INTRODUCTION

Boolean compressed sensing (CS) attempts to recover a sparse bi-
nary vector from a collection of binary measurements which com-
putes disjunctions of subsets of its entries [1-4]. Viewing these
measurements as matrix multiplication by a binary sensing matrix
in the Boolean algebra, where disjunction and conjunction replace
linear algebraic addition and multiplication, establishes a close con-
nection to traditional CS [5]. Recent work has applied the concepts
of Boolean CS to supervised classification to learn interpretable de-
cision rules with excellent generalization via a linear programming
formulation [6]. Classification rules learned using this proposed
method take the form of a conjunctive clause. As an example in
a management setting, a rule-based classifier for predicting the vol-
untary resignation of salespeople is [7]:

e Job Role = Specialty Software Sales Rep; AND

e Base Salary < 75,168; AND

e Months Since Promoted > 13; AND

e Months Since Promoted < 30; AND

e Quota-Based Compensation = FALSE.

As an example in sports analytics, a rule-based classifier for predict-
ing the winner of a tennis match is:

e Win more than 59% of 4 to 9 shot rallies; AND

e Win more than 78% of points when serving at 30-30 or
Deuce; AND

e Serve less than 20% of serves into the body.
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Sparsity comes into the rule learning formulation because the five
terms in the salesforce example and the three terms in the tennis ex-
ample are selected from a large dictionary of potential terms. Non-
zero entries in a sparse binary vector dictate which terms are in-
cluded in the decision rule, and all other potential terms, such as
‘Job Role = Dealmaker’ and ‘Base Salary < 77,124, correspond to
zeroes in the vector.

For tractability in rule-based classification, continuous-valued
features (such as base salary, or percentage of serves into the body)
are usually quantized with a small number of thresholds [8—13].
Ideally, one would like to consider all possible thresholds (up to the
resolution of the training samples) as candidate terms for the classi-
fication rule, but this may require a large number of columns in the
sensing matrix and create a large linear program (LP) in the formu-
lation of [6]. However, if there were ways to certifiably know be-
fore solving the Boolean compressed sensing LP that certain terms
would not appear in the solution, we could remove the correspond-
ing columns in the sensing matrix and solve a much smaller and
more tractable LP. Such certifiable removal of columns is known as
screening in the sparse signal representation literature [14-22].

In this paper, our contribution is to investigate screening for
Boolean CS, focused primarily on the rule learning application with
continuous features. No previous work on screening has examined
the Boolean sparse signal recovery problem [14-22]. As Boolean CS
relates to nonadaptive combinatorial group testing, we also note that
the screening tests we develop can be applied to the latter problem
as well [23,24].

We develop two classes of screening tests in this work. One
class is simple screening rules that arise from misclassification error
counting arguments. The other class is based on a feasible primal-
dual pair of solutions to the LP. Taken together, the tests eliminate
a very large fraction of the Boolean terms in the problem from fur-
ther consideration. We show performance results on several data
sets from the UCI Machine Learning Repository [25], indicating the
large fraction of columns that can be safely dropped from the LP and
the resulting speedup in running time to solve the LP.

2. RULE LEARNING FORMULATION

In this section, we briefly describe how to learn classification
rules via Boolean CS [6] before turning to various screening
tests in the sequel. We are given m labeled training samples
{(x1,91), .-, (Xm,ym)} where the x; € X are the features and
the y; € {0,1} are the Boolean labels. We would like to learn a
function g(-) : X — {0, 1} that will accurately generalize to clas-
sify unlabeled feature vectors drawn from the same distribution as
the training samples. We represent individual Boolean terms, such
as ‘Months Since Promoted > 13, where a continuous feature is
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tested against a set of thresholds, by functions a;(-) : X — {0,1},
7 = 1,...,n. Then for each of the training samples, we can calcu-
late the truth value for each of the terms, leading to an m X n truth
table A with entries a;; = a;j(x;). Writing the true labels of the
training set as a vectory € {0,1}™, we have:

y=AVw®n, (D

where w € {0,1}" is the sparse vector to be learned that indicates
which terms are included in the decision rule, and n is noise that
flips some values through the exclusive disjunction operation. The
notation y = A V w is shorthand for:

yi:\/aij/\’wj, 22177m (2)
j=1

As in the standard sparse signal recovery problem, we would like
to find w satisfying (1) while keeping ||w||o and the noise n small.
Expressing the Boolean constraint y = A V w through ordinary lin-
ear inequalities, relaxing the ¢o problem to the ¢; problem, relaxing
the binary constraint on the vector w to 0 < w < 1, and introduc-
ing slack variables to account for noise, the rule learning problem is
captured in the following LP [6]:

min ij —&-)\Z& 3)
j=1 i=1

st. 0<w;<1,j=1,...,n
0<&<1,ieP

AZw:gZ?

where the regularization parameter A trades training error and the
sparsity of w, 1 is the vector of all ones of appropriate dimension,
‘P indexes the set of positive training samples, Z indexes the set of
zero-valued training samples, A» and Az are the corresponding
rows of A, and £, and § > are the corresponding slack variables.

Let p = |P| and assume without loss of generality that A con-
sists of the first p rows of A, ie., P = {1,...,p}and Z = {p +
1,...,m}. Also, let a; stand for the ith row of A and let a’ stand
for the jth column of A fori € {1,...,m} and j € {1,...,n}.
Furthermore, let a%; and a’, consist of the components of a’ corre-
sponding respectively to the index sets P and Z.

The learned decision rule §(x), which is a conjunction of
Boolean terms, is obtained from the LP solution w [6]. For frac-
tional solutions, one can use randomized rounding to recover binary
solutions, or branch and bound to solve the integer program directly.
We denote classification errors as follows. False alarms on the
training set are those samples such that §(x;) = 1 where y; = 0,
missed detections on the training set are the samples §(x;) = 0
where y; = 1. For simplicity, false alarms and missed detections are
assumed to be equally costly in this work, but all our screening tests
can be directly extended to the unequally weighted case.

3. SCREENING TESTS

The formulation in (3) produces a very large LP, which can be
solved for moderate data sizes, but becomes challenging for large
datasets and large numbers of quantization thresholds on continuous
features. Our aim here is to provide computationally inexpensive
pre-computations which allow us to eliminate the majority of the

columns in the A matrix by providing a certificate that they cannot
be part of the optimal solution.

3.1. Simple Screening Tests

We first observe that a positive entry in ajz corresponds to a false
alarm error if the column is active (i.e., if the corresponding w; = 1).
The potential benefit of including column j is upper bounded by the
number of positive entries in aJ,. The first screening test is simply
to remove columns in which ||aZ [lo > ||a% ||o-

An additional test compares pairs of columns j and j for differ-
ent threshold values of the same continuous feature dimension of X.
We note that such columns form nested subsets in the sense of sets
of nonzero entries. If 6; and ;/ are the thresholds defining a;(-)
and a]—/(-) with 0j < 0j/, then {k ‘ T < GJ} C {k | T < Hj/}.
Looking at the difference in the number of positive entries between
columns of A z and the difference in the number of positive entries
between columns of Ap, we never select column j instead of col-
umn j' if Ha;,/ llo—lla o > Hag llo— llaZ ||o by a similar argument
as before.

We consider two variations of this pairwise relative cost-
redundancy test: first, only comparing pairs of columns such that
j' = j + 1 when the columns are arranged by sorted threshold
values, and second, comparing all pairs of columns for the same
continuous feature, which has higher computational cost but can
yield a greater fraction of columns screened. Although most appli-
cable to columns corresponding to different threshold values of the
same continuous feature of X', the same test can be conducted for
any two columns j and j' across different features.

3.2. Tests Based on a Feasible Primal-Dual Pair

Now we use LP duality theory to provide further screening tests
when a primal-dual feasible pair is available for the LP and men-
tion cost-effective ways to provide such primal dual pairs. Specifi-
cally, we first reformulate (3) along with the requirement that w is
a Boolean vector as a minimum weight set cover problem. Then,
if we have a feasible binary primal solution available, we can pro-
duce certificates that w; in the optimal solution cannot be nonzero
as follows. If by setting w; = 1 and recomputing the dual, the dual
objective function value exceeds the primal objective function value,
then any solution with w; = 1 is strictly inferior to the feasible bi-
nary primal solution that we started with and we can remove column
a’. Thus a key step is finding feasible binary primal and dual so-
lutions from which we can base the screening. Note that this test
explicitly assumes we want integral solutions to (3); the columns re-
moved would not be present in an optimal binary solution, but could
be present in an optimal fractional solution.

We start off by giving a reformulation of the LP in (3), i.e., we
consider an LP with the same set of optimal solutions as the one in
(3). First note that the upper bounds of 1 on the variables £; are
redundant. Let (W, €) be a feasible solution of (3) without the upper
bound constraints such that & > 1 for some i € P. Reducing &; to 1
yields a feasible solution (as a;, W + &; > 1—the only inequality &;
participates in besides the bound constraints—is still satisfied). The
new feasible solution has lower objective function value than before,
as & has a positive coefficient in the objective function (which is
to be minimized). One can similarly argue that in every optimal
solution of (3) without the upper bound constraints, we have w; <1
(for j = 1,...,n). Finally, observe that we can substitute &; for ¢ €
Z in the objective function by a; w because of the constraints a;w =
& for i € Z. If we subsequently divide the objective function by A,
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we get the following equivalent LP to (3):
n 1 ) P
min 3 (5 ladlh )y + 36 @
j=1 i=1
st. 0<w;,j=1,...,n
0<¢&,i=1,...,p
Apw+&p > 1.

The optimal solutions are the same as in (3), and the optimal solution
values are the same up to multiplication by .

Writing Apw + £p as Apw + I€,, where I'is the p X p
identity matrix, ||a’||; as 17a%, and letting p be a row vector of p
dual variables, one can see that the dual is:

P
max Z“i (5)
i=1
st. 0< u;<1l,2=1,...,p

nAp < %1,1 +17Az.
Suppose fi is a feasible solution to (5). Then clearly Y2, fi; yields
a lower bound on the optimal solution value of (4).

Let S(j) stand for the support of aZ,. Furthermore, let N (j)
stand for the support of 1 — a%;, i.e, it is the set of indices from P
such that the corresponding components of ag, are zero.

Now consider the situation where we fix w; (say) to 1. Let A’
stand for submatrix of A consisting of the last n—1 columns. Let w’
stand for the vector of variables wa, ..., wy. Then the constraints
Apw +£p > 1in (4) become A w' +€p > 1 — ap. Therefore,
for all ¢ € S(1), the corresponding constraint is now (A% );w’ +
& > 0 which is a redundant constraint as A% > 0 and w', &; >
0. The only remaining nonredundant constraints correspond to the
indices in A/(1). Then the value of (4) with w; set to 1 becomes

1 1 . " /1 ; P
(X + ||az||1) + min ; (X + Haleh) w; + ;5 ©)
st. 0<w;,51=2,...,n
0<&,ieN(1)
Alqyw' +&nvay > 1.
This LP clearly has the same form as the LP in (4). Furthermore,

given any feasible solution fi of (5), [ (1) defines a feasible dual
solution of (6) as

A < 11.+17Az

_ _ 1
= Bis) A + Ay Ay € y1no1+17AZ

1
= HN(1)A§V(1> < Xlnfl +17A%.
Therefore 3, \r(,y f: is a lower bound on the optimal solution
value of the LP in (6) and therefore

1 _
X+||alz||1+§: i )
i€EN (1)

is a lower bound on the optimal solution value of (4) with w; set
to 1. In particular, if (W, &) is a feasible integral solution to (4)
with objective function value (3°7" | w;) /A +3F_, &, and if (7) is
greater than this value, than no optimal integral solution of (4) can
have w1 = 1. Therefore w; = 0 in any optimal solution, and we

can simply drop the column corresponding to w; from the LP.

3.3. Obtaining Feasible Primal-Dual Pairs

We use a simple greedy heuristic to find a feasible solution j& to
(5), where every nonzero component of fi is 1. In other words, &
corresponds to a subset R of the row indices {1, ..., p} of Ap such
that ZieR(Ap)i < 1T A z; after all nAp < 1T Az with o a
binary vector implies that & is feasible for (5). We initialize R to
() and then simply go through the rows of A in some fixed order
(increasing from 1 to p), and for a row k, if

ST (Ar)i+ (Ap) <17Az,

IER

we set R to R U{k}. The heuristic needs only a single pass through
the matrix Ap, and is thus very fast. Furthermore, the computation
of the bounds in (7) for each variable w; (using the fixed dual solu-
tion fz) can be executed with another pass through the matrix Ap.

We also use a greedy heuristic to compute a feasible integral
solution to (4). Let e; stand for the unit vector with a one in the j
component and zeroes elsewhere. Note that for any assignment of w
to W, where W is a binary vector, £ = max{0,1 — Apw}, where
the maximum is taken component-wise, is the least cost assignment
of values to £ so that (W, £) is a feasible integral solution of (4).

We initialize (W, €) by setting W to 0, and & appropriately. The
discussion in Section 3.1 suggests that it is desirable to set a vari-
able w; to 1 if for the corresponding column (||a%|lo — ||a%||o) is
small. We therefore process the w; variables in increasing order of
(lla%llo — [|a]lo) values, and set w; to 1 (and W to w + e;) if
and only if the objective function value decreases (after updating &
appropriately). Finally, we compare the lower bounds in (7) with the
objective function value of our computed primal integral solution
(W, €) to delete columns.

We also consider enhanced versions of the primal and dual
heuristics. In the enhanced primal heuristic, instead of making a
single pass through the sorted columns and choosing columns in a
greedy fashion, we choose a column to include in our solution by
making a complete pass through all unchosen columns and finding
the one which reduces the objective function the most when added
to the current solution. To avoid taking too much time, we never add
more than a fixed number (three in our experiments) columns to the
solution. In the enhanced dual heuristic, we simply sort the rows of
Ap by increasing number of nonzeroes before applying the greedy
dual heuristic.

4. EMPIRICAL FINDINGS

In this section, we examine the empirical performance of the screen-
ing tests on several data sets from the UCI Machine Learning Repos-
itory [25], which all have continuous-valued features: ionosphere
(m = 351), banknote authentication (m = 1372), MAGIC gamma
telescope (m = 19020), and gas sensor array drift (m = 13910).
The first three are naturally binary classification problems whereas
the fourth is originally a six class problem that we have converted
into a binary problem. We use IBM ILOG CPLEX 12.4 on a single
processor of a 2.33 GHz Intel Xeon-based Linux machine to solve
the LP and find the optimal binary solution via branch and bound.
For most of the examples here, the LP produced integral solutions.
Table 1 and Table 2 give the results with two different varia-
tions of the screening tests described in Section 3. The first varia-
tion is less expensive computationally and only compares consecu-
tive columns in the A matrix for the simple pairwise test, and uses
the basic primal and dual heuristic. The second variation compares
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. R . | Columns Screened | Columns Screened | Total Columns | Fraction Columns
Data Set Features Thresholds Columns by Simple Tests by Duality Test Sereened Screened
10 642 596 637 637 0.992
Tonosphere 33 20 1282 1207 1264 1265 0.987
) 50 3202 3071 2913 3119 0.974
100 6402 6204 5870 6287 0.982
10 80 36 66 67 0.838
Banknote 4 20 160 79 139 141 0.881
50 400 222 350 354 0.885
100 800 461 694 711 0.889
10 200 188 183 188 0.940
20 400 375 369 377 0.943
MAGIC 10 30 1000 944 901 044 0,944
100 2000 1388 1763 1888 0.944
10 2560 1857 1977 2050 0.801
Gas 128 20 5120 3866 3948 4257 0.831
50 12800 9813 9046 10402 0.813
100 25600 19827 17888 20911 0.817

Table 1. Screening results for consecutive column comparison and basic primal and dual heuristics.

Columns Screened

Columns Screened

Total Columns

Fraction Columns

Data Set Features Thresholds Columns by Simple Tests by Duality Test Sercened Screened
10 642 596 638 638 0.994
Tonosphere 33 20 1282 1210 1271 1271 0.991
50 3202 3102 2984 3133 0.978
100 6402 6269 5968 6310 0.986
10 30 40 71 71 0.888
Banknote 4 20 160 92 142 142 0.888
50 400 259 350 355 0.888
100 800 548 700 712 0.890
10 200 188 183 188 0.940
20 400 375 369 377 0.943
MAGIC 10 30 T000 975 916 9713 0945
100 2000 1892 1799 1892 0.946
10 2560 1875 2242 2256 0.881
Gas 128 20 5120 3943 4684 4758 0.929
50 12800 10235 11378 11824 0.924
100 25600 20935 22814 23893 0.933

Table 2. Screening results for all pairs column comparison and enhanced primal and dual heuristics.

Thr. | FullLP | (a)Scr. | (a)LP | (a)Tot. | (b)Scr. | (b)LP | (b)Tot.
10 18.58 0.34 247 2.81 0.74 1.38 2.12
20 39.52 0.73 3.96 4.69 1.53 1.29 2.82
50 103.46 2.01 12.12 14.13 4.03 3.56 7.59
100 215.57 4.28 24.30 28.58 8.86 5.90 14.76

Table 3. Gas data set running times in seconds for screening, solving
the LP, and the total of the two: (a) basic tests, and (b) enhanced tests.

all pairs of columns in the pairwise test and uses the enhanced ver-
sions of the primal and dual heuristics. The tables show results
for the four data sets with four different numbers of thresholds per
feature dimension. We construct the a;(x) functions by quantile-
based thresholds, and consider both directions of Boolean functions,
e.g. ‘Base Salary < 75,168’ as well as ‘Base Salary > 75,168.” The
results show the number of columns screened by the simple tests
alone, the number of columns screened by the duality-based test
alone, and their union in total columns screened. The tests may also
be run sequentially, but for brevity we do not discuss this here.

The first thing to note in the tables is that our screening tests
dramatically reduce the number of columns in the LP. The fraction
of columns screened is fairly stable across the number of thresholds
within a data set, but tends to slightly improve with more thresholds.
As expected, the fraction of columns screened by the enhanced tests
shown in Table 2 is greater than or equal to the basic tests shown in
Table 1; this difference is most significant in the gas data set where
the basic tests screen 81% of the columns but the enhanced tests
screen 93%, i.e. only 7% of the columns remain after screening. The
simple tests and duality-based tests tend to have a good deal of over-
lap, but there is no pattern with one being a superset of the other.

The implications for running time are presented in Table 3,
where we focus on the largest data set, gas. The first column shows
the full LP without any screening. We compare that to the total time
for screening and solving the reduced LP for the basic and enhanced
screening tests. We can see that screening dramatically reduces the
total solution time for the LP. Enhanced screening, while requiring
more computation, does compensate the LP time and significantly
reduces the total running time. With 100 thresholds we solve a very
large binary integer problem with 25,600 variables to optimality in
under 15 seconds.

5. CONCLUSION

In this paper, we have developed two classes of novel screening tests
for Boolean CS applied to classification rule learning. One class
of tests is based on counting false alarm and missed detection er-
rors whereas the other class is based on duality theory. In contrast
to Lasso screening [14-22], which makes use of strong duality, the
proposed tests take advantage of the integer nature of the Boolean
CS problem to check if the dual value is less than or equal to the
optimal integer value. We develop both basic and enhanced versions
of the tests, resulting in various options that trade screening running
time and fraction of columns screened. Results on several real-world
classification problems indicate the merit of the proposed method.

Ultimately our goal is to enable learning interpretable classifi-
cation rules via Boolean CS for very large datasets. In addition to
screening, we are investigating reparameterization of the A matrix
to make it sparse and column generation approaches for efficiently
solving the LP [26].
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