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ABSTRACT

In this paper, the robust off-grid recovery of the compressed signals
with atomic norm-regularized least-squares problem is studied. The
aim of the recovery is to reconstruct the original signal and to de-
tect its off-grid support set. The general optimality conditions for
the solution to this problem and its dual problem are proposed and
discussed. A method based on dual certification to detect the sup-
port set is introduced and proved to be effective. As a specific case,
the target signal is further assumed to have unknown line spectrum.
Then the problem is also an estimation of a low dimensional sub-
space which is indexed by continuous parameters, yet the dimen-
sion itself is unknown. Under these presumptions, the squared-error
of the reconstruction is derived. Finally, numerical experiments are
demonstrated in such case to validate the effectiveness of the method
and the plausibility of the theory.

Index Terms— Sparse recovery, robust signal reconstruction,
off-grid support detection, atomic norm, line spectra detection.

1. INTRODUCTION

The reconstruction of a sparse signal and the detection of its sup-
port set from compressed measurements is a fundamental issue in
the thriving realm of compressed sensing [1]. The sparse recovery
problem has lately been unified in a general form by the model of
atomic norm and atom set [2, 3]. The atomic norm itself, which is
heuristically the tightest convex description of the cardinality of the
support set, is not a newly invented idea [4]. The best part of it lies in
that the sparse domain could be parameterized by continuous factors,
hence it facilitates the off-grid support detection which is preferred
in some high-resolution-required situations. Among all the impor-
tant works in this general framework [5, 6], the work [7] has drawn
some essential conclusions on the abstract denoising problem with
atomic norm, despite that the compression is not in their main con-
sideration.

Without compression, significant results have also been reached
in the line spectra estimation and the recovery of the corresponding
time-domain signal [8–12]. A similar problem has been named as
super resolution [13, 14], in which the higher end of the spectrum is
estimated from the samples at the lower end of it, and the estimation
could be infinitely accurate given that the lines in the spectrum are
separated far enough. In the work [7], the problem of robust line
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spectra detection is dealt as a special case of their general atomic
norm minimization problem.

In the framework of compressive subspace parametric estima-
tion [15] [16, Chap 4], the target signal is assumed to be in an un-
known low dimensional subspace indexed by continuous parameters,
and the purpose is to find such embedding subspace and reconstruct
the target, yet the dimension of the subspace is often pre-known.

1.1. Problem Formulation

To begin with, suppose that the target signal x∗ ∈ C
N admits a

linear combination of a few atoms from a given atom set.

x∗ =

s∑
k=1

ckak, (1)

where ck ∈ R+, ak ∈ A, k = 1, · · · , s, and A is a compact set
in C

N . What we observed is a non-adaptively compressed and con-
taminated measurement

y = Φx∗ +w, (2)

where w ∈ C
N is an additive noise, and Φ ∈ R

MN ,M < N is a
known sensing matrix. In order to reconstruct x∗ from y, an atomic
norm-regularized least-squares optimization problem is formulated
as

min
x

1

2
‖y − Φx‖22 + τ‖x‖A, (3)

where τ is a chosen regularization parameter. For the definition of
‖ · ‖A, please refer to [2, Section 2.1].

Furthermore, the specific case of reconstructing line-spectrum
signal could be well fitted into the above framework. In this scenario,
the target x∗ admits a decomposition in (1) with A defined as:

A = {aω ∈ C
N : aωn = ejωn, ω ∈ [0, 2π]}, (4)

and ak = aωk . Such x∗ could also be regarded as a vector lying in
a low dimensional subspace, which is parameterized by an unknown
ω = [ω1, · · · , ωs]

T ∈ Ω, where Ω = [0, 2π]s, and s is also not
known in advance.

This work aims to recover x∗ from y from two aspects: to re-
construct the original signal and to estimate its support in an off-grid
manner, i.e. the positions of the elements in the support set are not
assumed to be on any fixed grid.
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1.2. Main Contribution

The first contribution in this paper is the general optimality condi-
tions for problem (3). In addition, a general off-grid support detec-
tion method based on dual certification is proposed. These results
have underlying connections to [7], but it should be emphasized that
the basic difference lies in that the compression is utilized in this
work. The second contribution is the squared reconstruction error in
the problem of line-spectrum signal recovery. We find that the com-
pressing matrix brings in new challenges which are partly dealt with
the restricted isometry property with respect to a low dimensional
subspace [16, Chap 4] [17]. Further more, the performance of the
proposed general support detection method is verified in numerical
experiments together with the signal reconstruction method in the
line-spectrum case.

2. GENERAL OPTIMALITY CONDITIONS AND SUPPORT
DETECTION

In this section, the general problem of robust compressed signal re-
construction and off-grid support detection based on atomic norm-
regularized least-squares minimization are studied.

To begin with, a lemma states the optimality conditions for prob-
lem (3).

Lemma 1. x̂ is the solution to problem (3), if and only if the condi-
tions below hold simultaneously

1. ‖ΦT(y − Φx̂)‖∗A ≤ τ ;

2. 〈y − Φx̂,Φx̂〉 = τ‖x̂‖A.

Proof. Please see 6.1.

From (3) one may readily accept that τ plays an important role
in balancing the two penalties of reconstruction error and sparsity. If
τ tends to be 0, then Φx̂ will tend to be close to y, which is preferred
when the noise level is relatively low. Otherwise, Φx̂ is allowed to
be far from y, which brings benefit to the heavy-noise case. To be
more concrete, Lemma 1 describes the quantitative relation between
the regularization parameter τ and the reconstructed x̂.

The next lemma claims the dual problem of problem (3).

Lemma 2. The dual problem of problem (3) is

max
λ

1

2
‖λ(ΦΦT)−1Φ‖22 + λTz, (5)

s.t. ‖λ‖∗A ≤ τ, λ− ΦTy = ΦTΦz. (6)

Proof. Please see 6.2.

Suppose that λ̂ is the solution to problem (5). From the strong
duality which the problem holds, it could be easily verified that if x̂

is the solution to (3), and λ̂ satisfies that

λ̂ = ΦT(y − Φx̂), (7)

then λ̂ is the solution to problem (5). Equation (7) could be used to

get the needed λ̂ in the next proposition, in which an off-grid support
detection method is proposed based on those two lemmas above.

Proposition 1. Suppose that λ̂ is the solution to problem (5) . If for
each element in A and a subset S ⊂ A satisfy that

〈λ̂,a〉
{
= τ, ∀a ∈ S;
< τ, ∀a /∈ S, (8)

then S is the support set of the solution to problem (3).

Proof. Please see Appendix 6.3.

The proposition suggests that the support set could be estimated
by finding all the maximums of the inner products of λ̂ and all the
potential atoms. If the atoms are indexed by continuous parameters
which belong to a compact set, then the support set could be de-
tected by identifying a continuous function’s all maximums, which
are guaranteed to be reached in that the domain of the function is
compact. Therefore, an off-grid support detection is realized.

One may notice that a similar proposition is addressed in [7].
However, the essential difference is that our proposition actually
works with the compressed signals.

3. RECOVERY ERRORS OF LINE-SPECTRUM SIGNAL

In this section, the above general framework is applied to the prob-
lem of line-spectrum signal recovery. The core result includes a
squared reconstruction error. The impact of the compressing ma-
trix can not be neglected, and is partly represented by the restricted
isometry property with respect to the underlying subspace.

Theorem 1. Suppose that the target signal x∗ ∈ C
N has line spec-

trum, i.e., it could be decomposed as (1) with A specifically defined
in (4). x̂ is the solution to problem (3) in which y is obtained by (2),
Φ ∈ R

MN , and Φij ∼ N (0, 1/M) are i.i.d.. If the regularization
parameter τ is not less than ‖ΦTw‖∗A, then

‖x̂− x∗‖22 ≤ 2τ

1− δ
‖x∗‖A, (9)

P

{
δ > C

(√
st

M
+

s log (2s)t

M

)}
≤ s(2π)ses−t, (10)

where t is a positive factor and C is a constant.

Proof. Please see 6.4.

There are several points to be discussed in the theorem. Firstly,
the reconstruction error is bounded, and it increases linearly with the
tightest convex relaxation of the support set’s cardinality.

Secondly, compared with Lemma 1, the theorem provides more
detailed relation between τ and the reconstruction error. When τ
grows from ‖ΦTw‖∗A, initially the error increases linearly with τ ,
and then x̂ approaches 0 when τ tends infinity. When τ equals to
‖ΦTw‖∗A, the bound reaches its optimal value. As for the case when
τ increases from 0 to ‖ΦTw‖∗A, the penalty function is changing
from the non-regularized one to the optimally regularized one, thus
the error diminishes. Such prediction will be verified in the experi-
ments, yet it is not in the theoretical results.

Thirdly, since δ needs to be less than 1 with positive prob-
ability, t should be chosen such that t ∼ s, and M should be
larger than s2 log s. Such requirement is not as ideal as the famous
M > s log(N/s) in the “on-grid” compressed sensing [18], but our
method and result are actually dealing with the off-grid situation
where the well-known incoherent condition is not available. The
term 1 − δ indicates the negative effect of the compression. The
randomness is caused by the compressing matrix, and the theorem
states that δ will have a higher probability to be relatively small, if s
is smaller or M is larger. Since δ delineates the restricted isometry
property of the compression with respect to the sparse domain, the
bound in (9) is tight. Compared with the result on the reconstruction
error in [7], our theorem indicates that if the compressing matrix is
set properly, then the error of the compressed recovery could have
a high probability to be as small as the error of the non-compressed
recovery problem.
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Fig. 1. The reconstruction error and the support detection error dete-
riorate as the measurement SNR decreases. The length of x∗ is 64,
the number of observations is 30, and the cardinality of the spectrum
is 2. The SNR varies from 3.93dB to 43.01dB, and τ is tested from
0 to 1. 500 trials are simulated for each point.

4. NUMERICAL EXPERIMENTS

In this section, line-spectrum signal reconstruction and support de-
tection are implemented to verify the above work. Three sets of
experiments are displayed. During each trial of experiments, the
compressing matrix and the noise are Gaussian randomly generated,
and the positions of the lines in the spectrum are uniformly randomly
generated. The signal reconstruction is done by solving problem (3)
in which the convex optimization problem is solved by CVX [19],
and the support detection is by the method in Proposition 1 except
for the parallel experiment in the second set. The simulations are
implemented in MATLAB on the Windows 7 operating system1.

The first experiment is to demonstrate how the reconstruction
error and the support detection error deteriorate as the measurement
SNR decreases. The length of the unknown signal, the number of
observations, and the cardinality of the spectrum are 64, 30, and 2,
respectively. The SNR varies from 3.9dB to 43.0dB, and τ is tested
from 0 to 1. The experiment is simulated by 500 trials for each point,
and the results are shown in Fig.1. Each curve in the left sub-figure
shows that when τ is 0, which is equivalent to the case where the
least-square term does not appear in problem (3), the error is larger
than the optimal error obtained by choosing the optimal τ , i.e. the
lowest point in each curve. When τ is increasing from this optimal
point, the error ascends to 1. The curves in the right sub-figure show
that the support detection error increases in a different manner com-
pared with the reconstruction error in the left when τ grows. In fact,
the support detection error does not change too much when τ grows
from the optimal value at the beginning, but has a rapid increment
after τ grows out of a certain neighbourhood. Besides, the optimal
support detection error , i.e. the lowest point in each curve, is almost
the same when the SNR is high, but it degenerates more obviously
when the SNR continues to descend.

The second experiment shows that by using the method based on
dual certification in Proposition 1, the line spectra detection is much
more accurate than the matrix pencil method [20] in the noisy cir-
cumstances. The result is in Fig.2, where the experimental scenario
is the same as that of the first experiment. Before the support de-
tection, the signal is reconstructed by solving problem (3). For each
SNR level, τ is optimally chosen as suggested by the lowest point
for each curve of the reconstruction error in the first experiment.

The third experiment demonstrates how the reconstruction error
and the support position detection error deteriorate as the cardinality

1The code for these simulations is available at
http://gu.ee.tsinghua.edu.cn/publications#sx1
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Fig. 2. Support detection error of the proposed method and the ma-
trix pencil method. Parameter settings are the same as the first exper-
iment, and τ is selected according to the lowest point in each curve
in the left sub-figure of Fig.1. 500 trials are simulated for each point.
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Fig. 3. The reconstruction error and the support detection error de-
teriorate as the cardinality increases. The length of x∗ is 64, the
number of observations is 30, and the cardinality varies from 2 to
5. The SNR is 23dB, and τ is tested from 0 to 1. 500 trials are
simulated for each point.

of the spectrum increases. The length of the unknown signal and the
number of observations are 64 and 30, respectively. The SNR is cho-
sen as 23dB. The parameter τ is tested from 0 to 1. The experiment
is simulated by 500 trials for each point. The corresponding results
are in Fig.3. Each curve in the left sub-figure indicates that when
τ increases from its optimal point, the errors ascend almost linearly
before τ is over large. Besides, the square of the optimal error also
increases linearly with s. Such is also in the results of Theorem 1,
where the convex hull of s appears instead of s. The curves in the
right sub-figure show that the optimal support detection error degen-
erates when the cardinality continues to ascend.

5. CONCLUSION

In this work, the general sparse recovery problem is tackled by solv-
ing an atomic norm-regularized least-squares problem, in which the
off-grid sparsity is delineated by atomic norm. The optimality con-
ditions are provided and an off-grid support detection method is pro-
posed. As a specific case, the problem of the line-spectrum signal re-
covery is formulated under the above general framework. The quan-
titative effect of the regularization parameter on the reconstruction
error is discussed, and the deterioration brought in by the compres-
sion is bounded with probability dependent on the sparsity and the
number of compressed measurements. Furthermore, numerical ex-
periments of line-spectrum signal recovery focused on the recovery
errors and the regularization parameter are simulated under different
measurement SNR and different sparsity. When compared with the
matrix pencil method, our support detection method has better per-
formance with respect to the support position error. This paper is not
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exhaustive. More issues could be discussed in some related topics,
such as to formulate the concrete expression on the optimal regular-
ization parameter, and to theoretically analyze the support position
detection error of the proposed method.

6. PROOF

6.1. The Proof of Lemma 1

Proof. Let’s denote the objective function of a minimization prob-
lem as f(x). Then x̂ being its solution is equivalent to

f(x̂+ α(x− x̂)) ≥ f(x̂), ∀α ∈ (0, 1), x ∈ R
N . (11)

By substituting f(x) in (11) with the objective function in problem
(3) and using the convexity of atomic norm, one has

τ(‖x‖A − ‖x̂‖A) ≥ 〈y − Φx̂,Φ(x− x̂)〉, (12)

which is the necessary and sufficient condition for x̂ being the solu-
tion. Equation (12) may be rewritten as

τ‖x̂‖A − 〈y − Φx̂,Φx̂〉 ≤ inf
x
{τ‖x‖A − 〈y − Φx̂,Φx〉}. (13)

From the definition of the dual norm of atomic norm, it yields that

inf
x
{τ‖x‖A−〈ΦT(y−Φx̂),x〉} =

{
0, ‖ΦT(y − Φx̂)‖∗A ≤ τ ;
−∞, otherwise.

Therefore, the first condition for the solution is that ‖ΦT(y −
Φx̂)‖∗A ≤ τ. Then it yields from (13) that

τ‖x̂‖A−〈y−Φx̂,Φx̂〉 = inf
x
{τ‖x‖A−〈y−Φx̂,Φx〉} = 0, (14)

which is the second condition.

6.2. The Proof of Lemma 2

Proof. The Lagrangian function of problem (3) is

L(x,u, λ) =
1

2
‖y − Φx‖22 + τ‖u‖A + λT(x− u), (15)

and the objective function in the dual problem is

g(λ) = inf
x,u

L(x,u, λ)

= inf
x

(
1

2
‖y − Φx‖22 + λTx

)
+ inf

u

(
τ‖u‖A − λTu

)
(16)

The two terms in (16) could be solved separately. From the def-
inition of dual atomic norm, the second term is

inf
u

(
τ‖u‖A − λTu

)
=

{
0, ‖λ‖∗A ≤ τ ;
−∞, otherwise.

The first term in (16) is a semi-definite problem, and its minimum
could be solved by derivation. The result is that it has a finite mini-
mum if and only if

λ− ΦTy ∈ R(ΦTΦ), (17)

where R(·) denotes the column space, and the minimum is

1

2
‖(ΦΦT)−1Φλ‖22 + λTz, (18)

where z satisfies that

λ− ΦTy = ΦTΦz. (19)

Hence, considering the dual feasibility, we get that the dual prob-
lem maxλ g(λ) is formulated as (5).

6.3. The proof of Proposition 1

Proof. Using (7) to substitute x̂ by λ̂ into the first term of the inner
product in the second condition of Lemma 1, one gets

〈λ̂, x̂〉 = τ‖x̂‖A. (20)

Suppose that x̂ =
∑

a∈S caa+
∑

b/∈S cbb. Then we have

〈λ̂, x̂〉 =
∑
a∈S

ca〈a, λ̂〉+
∑
b/∈S

cb〈b, λ̂〉 (21)

= τ
∑
a∈S

ca +
∑
b/∈S

cb〈b, λ̂〉 (22)

For the right hand side of (20),

τ‖x̂‖A = τ
∑
a∈S

ca + τ
∑
b/∈S

cb. (23)

If ∃b /∈ S such that cb = 0, then it has to be a contradiction
that the last two equations cannot hold, since

∑
b/∈S cb〈b, λ̂〉 <

τ
∑

b/∈S cb. Thus, ∀b /∈ S, cb = 0, which means that S is the
support set of x̂.

6.4. The Proof of Theorem 1

Proof. First, Lemma 1 is used to deduce a bound on ‖Φx∗ −Φx̂‖22.

‖Φx∗ − Φx̂‖22
=〈Φx∗,y − Φx̂〉 − 〈Φx∗,w〉+ 〈Φx̂,w〉 − 〈Φx̂,y − Φx̂〉
≤τ‖x∗‖A − 〈Φx∗,w〉 − τ‖x̂‖A + ‖x̂‖A‖ΦTw‖∗A
≤2τ‖x∗‖A. (24)

Next, it is proved that the subspace that x∗ lies in satisfies the
Lipchitz-regularity, so that the results on Φ with respect to such kind
of subspace in [16, Theorem 3] can be utilized, and the reconstruc-
tion error bound is obtained consequently. The details are as the
following.

x∗ is lying in a low dimensional subspace Vω = [aω1 , · · · ,aωs ],
and x̂ is lying in Vω̄ , where ω, ω̄ ∈ Ω = [0, 2π]s. The projection
matrix of Vω is Pω = VωV

T
ω , and the norm of the projection

operation is defined as the spectrum norm of the matrix. Note that
Pω −Pω̄ is a Hermitian Toeplitz matrix

[Pω −Pω̄]mn =
s∑

i=1

ejωi(m−n) − ejω̄i(m−n). (25)

Using the bound on the eigenvalues of Hermitian Toeplitz matrix
in [21], one has

‖Pω −Pω̄‖ ≤ sup
β

f(β)

= sup
β

s∑
i=1

sin((ωi + β)(N − 1
2
))

sin(ωi+β
2

)
− sin((ω̄i + β)(N − 1

2
))

sin( ω̄i+β
2

)

≤
s∑

i=1

(2N − 1)2|ωi − ω̄i|/π ≤ √
s(2N − 1)2‖ω − ω̄‖2/π.

Hence, the Lipchitz-regularity of the subspace Vω is guaranteed.
According to the result in [16, Theorem 3] , the restricted isometry
constant is bounded by the probability that

P

{
δ > C

(√
st

M
+

s log(2s)t

M

)}
≤ sN0e

d−t, (26)

in which d = s, and N0 = (2π)s. Combining the result in (24), we
have (9) derived.
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