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ABSTRACT

Existing literatures suggest that sparsity is more likely to be induced
with non-convex penalties, but the corresponding algorithms usual-
ly suffer from multiple local minima. In this paper, we introduce
a class of sparsity-inducing penalties and provide the convergence
guarantees of a non-convex approach for sparse recovery using reg-
ularized least squares. Theoretical analysis demonstrates that under
some certain conditions, if the non-convexity of the penalty is below
a threshold (which is in inverse proportion to the distance between
the initialization and the sparse signal), the sparse signal can be sta-
bly recovered. Numerical simulations are implemented to verify the
theoretical results in this paper and to compare the performance of
this approach with other references.

Index Terms— Sparse recovery, weak convexity, non-convex
optimization, convergence analysis.

1. INTRODUCTION

Special attention has been paid to exploiting the characteristic of
sparsity in the field of signal processing in recent years, especially
along with the emerging compressive sensing (CS) [2, 3]. One of
the key issues arises is the problem of sparse recovery. Suppose we
observe M linear measurements

y = Ax∗ + e, (1)

where x∗ = (x∗
i ) ∈ R

N is an unknown sparse signal to be recov-
ered, A ∈ R

M×N is a sensing matrix with more columns than rows,
and e is the additive noise to the measurement vector. The problem
of finding the sparse solution to (1) can be recast to the following
regularized least squares problem

argmin
x

{
G(x) = J(x) + λ‖Ax− y‖22

}
, (2)

where J(·) is a sparsity-inducing penalty and λ is a parameter to
balance the sparsity and the accuracy of measurements.

When the �1 norm is adopted as the penalty J(·), problem (2)
is known as basis pursuit denoising (BPDN) [4]. Theoretical analy-
sis [5–7] reveals that BPDN can stably identify x∗ if x∗ is sufficient-
ly sparse and the noise e has bounded �2 norm or is white Gaussian.
Various efficient algorithms are proposed to solve BPDN, such as
gradient projection for sparse reconstruction (GPSR) [8], Bregman
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iterative regularization [9], and sparse reconstruction by separable
approximation (SpaRSA) [10]. When non-convex sparsity-inducing
penalty is adopted in (2), it has been demonstrated that more accurate
signals are tended to be derived [11–13]. However, the deficiency of
multiple local minima in non-convex optimization limits its prac-
tical usage, where improper initialization might cause the solution
trapped into the wrong ones. To the best of our knowledge, there is
no rigorous theoretical analysis of algorithms for non-convex opti-
mization (2) converging from the initialization to the sparse signal,
which is the main motivation of our work.

Combining the concepts of sparseness measure [14] and weak
convexity [15], a class of sparsity-inducing penalties is introduced
in this paper with characterization of the non-convexity. A simple
algorithm, which adopts the generalized gradient [16] as the update
direction, is proposed to solve the non-convex optimization problem
(2). Theoretical analysis shows that under some certain conditions,
if the non-convexity of the penalty is below a threshold (which is
in inverse proportion to the distance between the initialization and
the sparse signal), the sparse signal can be stably recovered. There-
fore, we can easily choose the initialization (e.g. the zero point)
and determine the appropriate non-convexity of the penalty to guar-
antee convergence of the algorithm. Numerical simulations are im-
plemented to show the influence of non-convexity on the recovery
performance, and to compare the performance of this approach with
other references.

2. PRELIMINARY

2.1. Null Space Constant

Several quantities are introduced in literatures to characterize the
performance of sparse recovery problems and algorithms, e.g. mu-
tual coherence [17], restricted isometry constant [18], and null space
constant [19]. In this paper we adopt null space constant since it
provides more tight conditions for sparse recovery than the other t-
wo [14]. Define xS as the vector generated by setting the entries of
x indexed by Sc = {1, 2, . . . , N} \ S to zeros.

Definition 1. Define null space constant γ(J,A,K) as the smallest
quantity such that

J(zS) ≤ γ(J,A,K)J(zSc) (3)

holds for any set S ⊂ {1, 2, . . . , N} with #S ≤ K and for any
vector z ∈ N (A), where N (A) denotes the null space of A.

2.2. Weak Convexity

A real valued function F (·) defined on a convex subset S ⊆ R is ρ-
convex if there exists some real number ρ which is the largest quan-
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tity such that the inequality

F (λt1+(1−λ)t2) ≤ λF (t1)+(1−λ)F (t2)−ρλ(1−λ)(t1−t2)
2

holds for any t1, t2 ∈ S and for any λ ∈ [0, 1]. ρ > 0, ρ =
0 and ρ < 0 correspond to strong convexity, convexity and weak
convexity, respectively. The following proposition reveals that F (·)
can be decomposed into the sum of a convex function and a square.

Proposition 1. (Proposition 4.3 from [15]). Function F : S → R

is ρ-convex if and only if there exists a convex function H : S → R

such that F (t) = H(t) + ρt2 for all t ∈ S.

The concept of subgradient for convex (possibly nondifferen-
tiable) functions can be generalized for weakly convex functions,
and it is termed as generalized gradient [16]. Mathematically, for
any t ∈ intS which denotes the interior of S, the generalized gradi-
ent f(t) of F (·) at point t is any element of the generalized gradient
set ∂F (t). It can be derived that ∂F (t) = ∂H(t)+2ρt, where H(·)
is the convex function in the decomposition of F (·) and ∂H(·) is the
subgradient set of H(·).

3. MAIN CONTRIBUTION

The main contributions of this paper are twofold. First, by exploit-
ing the concepts of sparseness measure and weak convexity, a class
of sparsity-inducing penalties is introduced. Second, the generalized
gradient method is proposed to solve (2) with convergence guaran-
tees from the initialization to the sparse signal, as is revealed in The-
orem 1.

3.1. Sparsity-inducing Penalty

First, a class of sparsity-inducing penalties is introduced. The penal-
ty J(·) is defined as

J(x) =
N∑

i=1

F (xi), (4)

where F (·) is a weakly convex sparseness measure satisfying the
following Definition 2.

Definition 2. The weakly convex sparseness measure F (·) satisfies
1) F (0) = 0, F (·) is even and not identically zero;
2) F (·) is non-decreasing on [0,+∞);
3) The function t 	→ F (t)/t is non-increasing on (0,+∞);
4) F (·) is a weakly convex function on [0,+∞).

Most commonly used non-convex sparsity-inducing penalties
are formed by weakly convex sparseness measures, e.g. those penal-
ties in [20–23]. The following lemma reveals some important prop-
erties of weakly convex sparseness measure. Define ∂F (0) = {0}.

Lemma 1. The weakly convex sparseness measure F (·) satisfies the
following properties:

1) F (·) is continuous and there exists α > 0 such that F (t) ≤
α|t| holds for all t ∈ R;

2) For any β > 0, F (βt) is also a weakly convex sparseness
measure, and its parameters are ρβ = β2ρ and αβ = βα.

Proof. Please refer to Section VI-A in [1].

Besides ρ, the parameter α also plays an important role in char-
acterizing the non-convexity of weakly convex sparseness measure
F (·) or sparsity-inducing penalty J(·). Lemma 1.2) derives these
parameters when the scale of the variable of F (·) varies.

3.2. Convergence Analysis of the Generalized Gradient Method

First, the generalized gradient method is proposed to solve the non-
convex optimization problem (2). Mathematically, initialized as the
zero point x(0) = 0, this method iterates as

x(n+ 1) = x(n)− κ∇G(x(n)), (5)

where positive κ denotes the step size and ∇G(x) = ∇J(x) +
2λAT(Ax− y) where ∇J(x) is a column vector whose ith ele-
ment is the generalized gradient f(xi) ∈ ∂F (xi).

Now let’s turn to the convergence analysis of the generalized
gradient method. Define σmin(A) as the smallest nonzero singular
value of A. The following lemma is established for preparation.

Lemma 2. For any (J,A,K) with J(·) formed by weakly convex
sparseness measure F (·) and γ(J,A,K) < 1, and for any positive
constant M0, if the regularization parameter λ = C1C2‖e‖−1

2 /2,
the inequality

G(x)−G(x∗) ≥ (C1/3)‖x− x∗‖2 (6)

holds for all vectors x∗ and x satisfying ‖x∗‖0 ≤ K, ‖x− x∗‖2 ≤
M0, and ‖x− x∗‖2 ≥ 3C2‖e‖2, where

C1 =
F (M0)

M0

1− γ(J,A,K)

1 + γ(J,A,K)
, C2 =

α
√
N + C1

C1σmin(A)
. (7)

Proof. See Section 4.1.

According to Lemma 2, if the gap between G(x) and G(x∗) is
small, x would not be far away from the sparse vector x∗. Lemma 2
also gives a choice of the regularization parameter λ. As is shown, λ
is in inverse proportion to the noise term ‖e‖2, and the proportionali-
ty constant can be well approximated by α

√
N/(2σmin(A)) (which

is easier to calculate) with relative error less than N− 1
2 . The follow-

ing Lemma 3 demonstrates the main result on the local minima of
problem (2).

Lemma 3. For any (J,A,K) with J(·) formed by weakly convex
sparseness measure F (·) and γ(J,A,K) < 1, and for any positive
constant M0, if the regularization parameter λ = C1C2‖e‖−1

2 /2,
the inequality

(x− x∗)T ∇G(x) > 0 (8)

holds for all vectors x∗ and x satisfying ‖x∗‖0 ≤ K,

‖x− x∗‖2 ≤ min {M0, C1/(−4ρ)} , (9)

and ‖x− x∗‖2 ≥ 3C2‖e‖2, where C1 and C2 are specified as (7).

Proof. See Section 4.2.

According to Lemma 3, for any local minimum x in the area of
(9), it also satisfies ‖x− x∗‖2 ≤ 3C2‖e‖2. The following Lem-
ma 4 summarizes the convergence performance of the generalized
gradient method in a single iteration. For simplicity, let x and x+

represent x(n) and x(n+ 1), respectively.

Lemma 4. For any (J,A,K) with J(·) formed by weakly convex
sparseness measure F (·) and γ(J,A,K) < 1, positive constant
M0, and vector x∗ with ‖x∗‖0 ≤ K, if the regularization parameter
λ = C1C2‖e‖−1

2 /2 and the previous iterative solution x satisfies
(9) and

‖x− x∗‖2 ≥ 6(d+ 1)C−1
1 κ+ 3C2‖e‖2, (10)
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where d = max‖x−x∗‖2≤M0
‖∇G(x)‖22 is a finite quantity and C1

and C2 are specified as (7), the next iterative solution x+ satisfies

‖x+ − x∗‖22 ≤‖x− x∗‖22 − κ2. (11)

Proof. The proof is similar to that of Lemma 5 in [1], and it is omit-
ted here to save space.

According to Lemma 4, if x(n) lies within a neighborhood of
the sparse signal x∗ as (9), as long as the distance between x(n)
and x∗ is larger than a quantity linear in both the step size κ and the
noise term ‖e‖2, the next iterative solution x(n + 1) will definitely
get closer to x∗. Therefore, in finite iterations, the solution will get
into the (O(κ) + O(‖e‖2))-neighborhood of x∗. To ensure that
the generalized gradient method converges, we require the sufficient
condition (9) satisfied for the initialization. We can simply choose

M0 = ‖x(0)− x∗‖2 ≤ C1/(−4ρ). (12)

The following lemma reveals that penalties with small non-convexity
will result in (12).

Lemma 5. For any (J,A,K) with J(·) formed by weakly convex
sparseness measure F (·) and γ(J,A,K) < 1, and for any posi-
tive constant M0, constraint (12) holds if the non-convexity of J(·)
satisfies

−ρ

α
≤ 1

M0

1− γ(J,A,K)

5 + 3γ(J,A,K)
. (13)

Proof. Please refer to Section VI-H in [1].

In this paper −ρ/α is utilized to characterize the non-convexity,
where −ρ divided by α is to remove the scaling effect on the penalty.
According to Lemma 1.2), the non-convexity of J(βx) is

−ρβ
αβ

= β
−ρ

α
(14)

for all β > 0. As a result, for any J(·) formed by weakly convex
sparseness measure, we can always generate a non-convex penalty
satisfying (13). Based on Lemma 4 and Lemma 5, the convergence
of the generalized gradient method is guaranteed as follows.

Theorem 1. (Convergence of the generalized gradient method) For
any (J,A,K) with J(·) formed by weakly convex sparseness mea-
sure F (·) and γ(J,A,K) < 1, and for any positive constant M0,
if the regularization parameter λ = C1C2‖e‖−1

2 /2 and the non-
convexity of J(·) satisfies (13), the recovered solution x̂ by the gen-
eralized gradient method satisfies

‖x̂− x∗‖2 ≤ 6(d+ 1)C−1
1 κ+ 3C2‖e‖2 (15)

provided that ‖x∗‖0 ≤ K and ‖x(0) − x∗‖2 ≤ M0, where d =
max‖x−x∗‖2≤M0

‖∇G(x)‖22 and C1 and C2 are specified as (7).

According to Theorem 1, under some certain conditions, if the
non-convexity of the penalty is below a threshold, the generalized
gradient method returns a stably recovered solution by choosing a
sufficiently small step size κ. If ρ = 0, J(·) is just a scaled version
of the �1 norm, and the condition (13) always holds. Therefore, no
constraint needs to be imposed on the initialization. This is consis-
tent in the fact that problem (2) is convex now and the initialization
can be arbitrary.

3.3. Discussion

Our work mainly aims to provide the convergence guarantees of a
non-convex approach for sparse recovery from the initialization to
the sparse signal. Some other literatures also try to address this im-
portant problem. In [11], a family of non-convex penalties which can
be decomposed as a difference of convex functions is introduced, and
the problem is solved based on an iterative algorithm which solves at
each iteration a convex weighted Lasso problem. Theoretical analy-
sis reveals that only the convergence to a stationary point of the ob-
jective function is guaranteed. In [12], a sufficient condition which
ensures that the sparse signal is a local minimizer of the sparse re-
covery problem is provided. Unlike our work, only “partial” conver-
gence is theoretically guaranteed in those existing works.

4. PROOF

4.1. Proof of Lemma 2

Proof. Define u = x − x∗ and decompose u by u = z + z⊥,
where z ∈ N (A) and z⊥ ∈ N (A)⊥ which denotes the orthogonal
complement of N (A). Recalling the definition of G(·),
G(x)−G(x∗) = J(x)− J(x∗) + λ‖Ax− y‖22 − λ‖e‖22. (16)

On the one hand, according to the proof of Lemma 3 in [1],

J(x)− J(x∗) ≥ C1‖u‖2 − C1C2‖Au‖2. (17)

On the other hand, it can be calculated that

λ‖Ax− y‖22 − λ‖e‖22 ≥ λ‖Au‖22 − 2λ‖e‖2‖Au‖2 (18)

Therefore, (16), (17), and (18) implies that

G(x)−G(x∗) ≥ C1‖u‖2 − (2λ‖e‖2 + C1C2)
2 /(4λ) (19)

= C1‖u‖2 − 2C1C2‖e‖2 ≥ C1‖u‖2/3, (20)

which completes the proof.

4.2. Proof of Lemma 3

Proof. According to the definition of ∇G(x), the proof of Lemma 4
in [1], Lemma 2, the requirement (9), and the fact that

2(x− x∗)TAT(Ax− y) ≥ ‖Ax− y‖22 − ‖Ax∗ − y‖22, (21)

it can be derived that

(x− x∗)T∇G(x) ≥ G(x)−G(x∗) + ρ‖x− x∗‖22
≥ C1‖x− x∗‖2/12 > 0, (22)

which completes the proof.

5. NUMERICAL SIMULATION

In this section two simulations are implemented to verify the the-
oretical analysis and to compare the proposed approach with other
references. The sensing matrix A is of size M = 200 and N =
1000, whose entries are independently distributed Gaussian with ze-
ro mean and variance 1/M . The locations of the non-zero entries of
the sparse signal x∗ are randomly chosen among all possible choic-
es, and these non-zero entries independently satisfy standard normal
distribution. The white noise e is also Gaussian with zero mean and
variance adjusted according to the measurement SNR (MSNR). We
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Fig. 1. The figure shows the recovery performance of the general-
ized gradient method versus non-convexity of the penalty when the
sparsity K = 30. The performance with the �1 penalty is also plot-
ted accordingly with the same types of lines as a benchmark.
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Fig. 2. The figure shows the recovery performance of the general-
ized gradient method versus non-convexity of the penalty when the
sparsity K = 60.

adopt the non-convex sparsity-inducing penalty in [21] as J(·), and
the regularization parameter λ = (α

√
N/(2σmin(A)))‖e‖−1

2 . The
generalized gradient method is initialized with the zero point and
with the step size κ = 1 × 10−5. The simulations are implemented
in MATLAB on the Windows 7 operating system1.

The first experiment tests the recovery performance of the gen-
eralized gradient method versus non-convexity of the penalty under
different MSNR. The simulation is repeated 10 times to calculate
the recovery SNR (RSNR) of the solution, and the results are plotted
in Fig. 1 with the sparsity K = 30 and in Fig. 2 with K = 60. In
Fig. 1, the performance with the �1 penalty is also plotted according-
ly with the same types of lines as a benchmark. It is shown that as the
non-convexity increases, the recovery performance improves at first,
and degenerates rapidly when the non-convexity continues to grow.
When the non-convexity approaches zero, the performance is close
to that with the �1 penalty. The results in Fig. 2 reveal that when
the sparsity is large, the sparse signals can only be stably recovered
with moderate non-convexity. This is due to the fact that the sparse
signal is no longer the minimum of the optimization problem when
the non-convexity is small, and that the generalized gradient method
fails to converge to the sparse signal when the non-convexity is large.

In the second experiment, the recovery performance of the gen-

1The code for these simulations is available at
http://gu.ee.tsinghua.edu.cn/publications#cl1
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Fig. 3. The figure compares the recovery performance of different
algorithms versus MSNR when K = 30.
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Fig. 4. The figure compares the recovery performance of different
algorithms versus MSNR when K = 60.

eralized gradient method is compared with some typical algorithm-
s, including orthogonal matching pursuit (OMP) [24], iteratively
reweighted least squares (IRLS) [25], and the oracle least squares
(LS) with the support known a priori. We denote J-penalty as the ap-
proach proposed in this paper with non-convexity −ρ/α = 100.75,
and �1-penalty when the �1 norm is adopted. The simulation is
repeated 50 times to calculate the RSNR. Fig. 3 demonstrates the
results when the sparsity K = 30. As can be seen, OMP is the best
practical algorithm and its performance approaches that of oracle LS
as MSNR increases. This is due to the fact that the support is likely
to be recovered by OMP when the sparsity is small. J-penalty out-
performs the rest algorithms. The results with K = 60 are plotted
in Fig. 4, which shows that the performance of J-penalty is the best
when the sparsity is large.

6. CONCLUSION

This work focuses on the performance of a non-convex approach
for sparse recovery using regularized least squares. A class of non-
convex sparsity-inducing penalties is introduced with characteriza-
tion of the non-convexity. We prove that under some certain con-
ditions, if the non-convexity is below a threshold, the sparse signal
can be stably recovered by the generalized gradient method. Ex-
periments show the superiority of utilizing non-convex penalties for
sparse recovery, and the approach proposed in this paper enjoys the
best recovery performance when the sparsity is large.
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