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Abstract—This paper addresses the problem of efficient sam-
pling and reconstruction of sparse spike signals, which have
been convolved with low-pass filters. A modified compressed
sensing (CS) framework is proposed, termed dictionary-based
deconvolution CS (DDCS) to achieve this goal. DDCS builds
on the assumption that a low-pass filter can be represented
sparsely in a dictionary of blurring atoms. Identification of
both the sparse spike signal and the sparsely parameterized
blurring function is performed by an alternating scheme that
minimizes each variable independently, while keeping the other
constant. Simulation results reveal that the proposed DDSS
scheme achieves an improved reconstruction performance when
compared to traditional CS recovery.

I. INTRODUCTION

According to the well-established theories of Shannon and

Nyquist, the exact recovery of a discrete signal requires a

sampling rate twice the signal’s bandwidth. Moreover, the

sampling scheme characteristics can have dramatic conse-

quences on the quality of the recorded signals, the hardware

necessary to achieve the required quality and therefore the

cost, time and effort that accompany the process. As a result,

designing efficient sampling schemes is a critical part of

numerous applications. In this work, we focus on a specific

case of signals, which can be modeled as time-series of shifted

and scaled pulses.

This class of signals encompasses a large number of signals,

ranging from neuronal activity [1] and ultrasound imaging [2],

to radar [3], UWB communications [4] and physiological

signals [5]. As an illustrative example, consider the case

of range imaging data obtained by a Time-of-Flight (ToF)

camera. Such systems function by emitting a laser pulse which

propagates through the atmosphere, is reflected by an object

and is subsequently recorded by an imaging sensor. Depth

information encoding is achieved by opening the electronic

gate of the camera only during a specific time interval, which

corresponds to pulses from a specific depth range.

A major limitation of this type of sampling scheme is

that, in order to obtain a full range sweep, that is to obtain

distance measurements for objects at n discrete depth levels,

n pulses have to be recorded. This process results in a large

number of unnecessary measurements that may contain no

valid information at all, since we expect that only a single,

or very few, measurements to actually record reflected pulses.

To overcome this apparent waste of resources, a novel the-

ory in signal sampling and reconstruction, termed Compressed

Sensing (CS), has been recently proposed by Donoho [6]

and by Candés et al. [7]. The main concept of CS is that

a signal can be recovered from a small number of random

measurements, far below the Nyquist-Shannon limit, provided

that the signal is sparse and an appropriate sampling scheme

is employed.

By modeling the pulses as a series of spike (delta) functions,

CS theory suggests that recovering the sparse spike signals

is possible if enough random measurements of the form

y “ Φx P R
M with M ! N are taken, and the M ˆ N

sampling matrix Φ adheres to the RIP property [8]. Recovery

of the sparse signal can be achieved by solving the following

ℓ1 minimization problem:

min
x

}x}1 subject to }y ´Φx}2
2
ă ǫ , (1)

where }x}1 “
ř

i |xi| is the ℓ1 norm, introduced as the convex

surrogate of the non-zero counting ℓ0 pseudo-norm, which

make the optimization tractable. Additionally, ǫ accounts for

noise and approximation errors. This problem is known as the

basis pursuit denoising and has recently shown to produce

accurate approximation of sparse signals [9]. In addition, for

signals that are strictly non-negative, such a constraint can be

introduced in the optimization [10].

An extension of this scheme considers the case where the

signal in question is not sparse by itself, but can be represented

sparsely in a dictionary of atoms, such that x “ Dz and

}z}0 ď K [7], [11]. In this case, the problem can be

formulated according to the synthesis framework and the

minimization is expressed as:

min
z

}z}1 subject to }y ´ΦDz}2
2
ă ǫ . (2)

While the above formulations of traditional CS and the dic-

tionary extension cover a large number of signal models,

considering the specific framework of sampling blurred spike

trains, a main drawback of the above formulation is that it does

not take into account the convolution of the spike signals with

low-pass filters, which encodes the signal propagation through

a medium, along with the sampling process.

An important byproduct of the convolution is that the

filtering process will distribute the sparse signal’s energy to

a larger support, resulting in significantly less sparse signals,

necessitating higher CS sampling rates. The process of signal

blurring and random sampling is visually depicted in Fig. 1.

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 3364



Fig. 1. Visual illustration of the blurring process. The sparse spike train
signal (top left) is convolved with the low-pass blurring filter (lower left),
which process the blurred signal (right). One can easily observe the dramatic
increase in the support of the initial sparse signal. The arrows under the
horizontal (time) axes indicate the random CS-based sampling of the signal.

In this work, we propose a CS reconstruction method,

which, in addition to the sparsity of the spike signal, also

assumes the existence of a dictionary that is able to represent

sparsely the low-pass filtering signal. Formally, let s be a

sparse signal encoding the locations and the amplitudes of the

spikes in the signal to be recovered. Furthermore, the sparse

signal undergoes a convolution with a low-pass filter h prior

to its sampling by a measurement matrix Φ, resulting in a

signal y “ Φps˙hq. The objective of our proposed DDCS is

to identify both s and h by exploiting the knowledge that s is

sparse and that h has a sparse representation over a dictionary

of blurring kernels B.

The rest of the paper is organized as follows: Section II

presents an overview of work along similar directions with

the one considered here. Section III provides a description

of the various signal models considered by our proposed

scheme, while the proposed scheme is presented in Section

IV. Experimental results are given in Section V and the paper

concludes in Section VI.

II. PREVIOUS WORK

The problem of blind and semi-blind deconvolution of

sparse signals has been explored from multiple aspects such

as Bayesian approaches [12] and sparsity seeking approaches

[13]. However, these methods assume that the fully sampled

data is available. In a recent work [14], the recovery of

the sparse signals and the filtering function from compressed

measurements was carried out by an iterative scheme, where

at each iteration an alternating minimization between the

spike stream identification and the impulse response estimation

takes place. However, unlike our work, the estimation of both

signals is obtained by a least squares minimization, whereas

we employ an ℓ1 regularization in order to encode sparsity

assumptions and achieve high quality reconstruction. Further-

more, we assume that a parametric model of the convolution

function is known and the specific realization is of interest. In

[4], the CS-based sampling and reconstruction of convolved

signals was also considered. In this case however, the specific

form of the impulse response was assumed known, unlike this

work where only a parametric model is assumed.

Recently, the framework of finite rate of innovation sam-

pling was introduced, which considers the sampling and recon-

struction of sparse signals by analog systems [15]. Our work

differs in that we do not consider analog signal but discritized

depth signals.

III. SIGNAL MODELS

A. Pulse train model

In the following, we consider signals which are expressed

as linear combinations of shifted and scaled delta functions,

sptq “
K
ÿ

j“1

ajδpt´ tjq , tajuKj“1
ě 0. (3)

In essence, the signals to be recovered correspond to a sparse

collection of scaled delta functions at specific time instances.

Due to its construction process, the signal s and therefore

the coefficients aj are strictly non-negative, a property that

we exploit during the reconstruction process. Recovery of

this type of signal according to the CS framework can be

accomplished by collecting

M “ OpK logpN{Kqq (4)

random measurements. However, the signal is question further

undergoes convolution, which will reduce the effective sparsity

and thus will require a higher number of measurements

for reconstruction. In this work, we address this issue by

considering a blurring kernel that is not itself sparse, but can

be sparsely represented in an appropriate dictionary.

B. Dictionary model

In our proposed approach, we assume that a dictionary of

L prototypical blurring functions encoded in B “ tbuLi“1
P

R
WˆL is available. This dictionary is constructed based on

the assumption that an accurate approximation of the blurring

function can be achieved by selecting a small number of

elements from the dictionary. The specific blurring kernel can

thus be expressed according to h “ Bk, where k is a K-sparse

signal.

In this work we consider a dictionary consisting of a collec-

tion of zero-mean Gaussian functions with different variances

given by bi “ 1?
2πσ2

i

exp
´x

2σ2

i . Furthermore, the bandwidth of

the kernels are truncated to B bins. The vector produced by

linear combinations of dictionary elements corresponds to the

realization of a Gaussian blurring kernel h “ řL

j“1
kjbj “

řL

j“1

1?
2πpkjσjq2

exp
´x

2pkjσjq2 , where tkjuLj“1
are the sparse

coefficients associated with the blurring kernel.

C. Sampling matrix model

Generating the set of random measurements of a signal

according to the CS specification presents various obstacles,

since the physical realization of many sampling matrices,

which satisfy the necessary requirements, is quite challeng-

ing. Examples of such matrices include matrices where the

elements are drawn from Gaussian and sub-Gaussian distribu-

tions [16]. However, various schemes for designing sampling
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matrices, which are supported by real hardware have been

proposed recently.

In this work, the random measurements are generated by

employing binary sparse matrices with a bounded number

of non-zero elements per column [17]. More specifically, the

sampling matrix is constructed such that each element is drawn

according to:

φij “
"

1{
?
d with probability dn

k

0 otherwise
(5)

The performance characteristics of this type of sampling

matrices were explored recently in [18], where it was shown

that such random sparse binary sampling matrices satisfy

the RIP, a necessary property for the recovery of signals

in the framework of CS. An important advantage of these

sampling matrices is that they approximate the performance

of their dense counterparts, but at a significantly reduced

computational and memory cost.

IV. PROPOSED SIGNAL RECOVERY

By considering the periodic extensions of the acquired

signals, the convolution can be written as a multiplication

with a circular matrix. In our specific setup, the property is

expressed as:

y “ Φps˙Bkq “ ΦCtsuBk “ ΦsCtBku “ ΦsCthu , (6)

where Ct¨u is an operator that produces a Toeplitz matrix

by performing the circular convolution of the signal with

an appropriately sized identity matrix. The ability to express

the convolution in such a way stems from the commutativity

property of the convolution [19].

In this work, we further assume that the low-pass filter

can be represented sparsely in a dictionary, that is, h “ Bk,

with k being sparse and that the pulse train signal consist of

non-negative elements. According to these assumptions, the

formulation of the recovery problem is given by:

min
s,k

}s}1 ` }k}1

subject to }y ´Φps ˙ Bkq}2
2
ă ǫ (7)

s ě 0 .

One can observe that the objective is the sum of two convex

functions, while the constraint encodes the pulse train gen-

eration process, that is, the sampling of the two convolved

signals. Furthermore, the requirement for a non-negative pulse

train signal is also encoded in the constraint. Solving the

above minimization problem is a challenging task due to the

coupling of the variables in the objective. However, owning to

the commutative property of the convolution, we employ an

alternating minimization that capitalizes on the separability of

the variables when they are considered individually.

A. Alternating minimization

In order to solve efficiently the problem expressed by

Eq. (7), we employ an alternating minimization scheme, where

during each iteration we minimize alternatively over one

variable of the problem in Eq. (7) and keeping the rest of

the variables fixed. This alternating optimization approach has

been utilized extensively for deconvolution, where constraints

on both the estimated signal and the blurring kernel are

necessary [20]. More specifically, minimizing with respect to

the pulse train signal st, the optimization is given by

min }st}1
subject to }y ´ΦGst}2

2
ă ǫ1 , (8)

where the matrix G “ Ctht´1u “ CtBkt´1u contains shifted

versions of the estimated blurring function parameterized by

kt´1. Similarly, minimizing Eq. (7) with respect to kt, the

optimization is given by:

min }kt}1
subject to }y ´ΦQkt}2

2
ă ǫ2 , (9)

where Q “ Ctst´1uB encodes multiple blurred versions of

the estimated pulse train signal, each one with a different blur-

ring kernel. The process continues to iterate until a maximum

iterations number is reached or a threshold on the error is

surpassed.

Due to the coupling of the variables in the objective function

in Eq. (7), global optimality is not guaranteed. Fortunately,

high quality approximations can be found if the optimal

solution to each subproblem is found [21]. One can observe

that the minimization problems in Eqs. (8) and (9) are in-

stances of ℓ1-regularized minimization and more specifically

the dictionary based formulation where the signals in question

can be represented sparsely in the corresponding dictionaries,

namely, G and Q.

Due to the specific construction process of the dictionary

and the sampling matrix, we expect that the coherence between

the dictionary and the sensing matrix to be low. The low

coherence, which suggest low sampling rates, is expected

since the non-zero elements of the sampling matrix are spread

while the dictionary elements are highly localized. In the

extreme case where the blur kernel corresponds to a constant

value (infinite bandwidth), the maximum of the inner product

between a column of the sensing matrix and the dictionary

element will be 0.5.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our proposed

method in terms of the achieved reconstruction error against

the standard CS reconstruction on synthetically generated data.

We consider the reconstruction of sparse pulse train signals

s P R
500, which have undergone convolution with blurring

kernels h P R50 and sampled with a binary sampling matrix Φ

with degree equal to 0.5. The blurring dictionary is constructed

by taking 100 Gaussians function with variance ranging from

0.1 to 5, resulting in a 50 ˆ 100 blurring dictionary. The

reconstruction performance of the sparse signals under various

sparsity, blurring kernel bandwidth and sampling ratio param-

eters is examined. We limited the number of iterations of the
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DDCS to 10, since we did not observe significant change in

performance with larger number of iterations.

Figs. 2 and 3 present the reconstruction performance of

the sparse pulse train with blurring kernel variances equal to

σ2 “ 1.9 and 3.1. Examining the first plot, we observe that

under all sampling rates, the proposed DDCS offers better re-

construction quality compared to traditional CS. Furthermore,

the reconstruction error reduces more smoothly for the case of

DDCS compared to traditional CS at medium sampling rates.

As it was expected, the performance is better for pulse train

signals with increased sparsity. Considering the more challeng-

ing case shown in Fig. 3, we again observe the superiority of

the reconstruction of DDCS versus traditional CS. The case

of reconstructing signals that have been additionally infected

by Gaussian noise is presented in Fig. 4. Last, the quality of

the blur kernel estimation is shown in Fig. 5.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Sampling Rate

R
o
o
t 

M
e
a
n
 S

q
u
a
re

 E
rr

o
r 

(R
M

S
E

)

Noise−free recovery with blur kernel (σ
2
 = 1.90)

DD−CS − p=0.05

CS − p=0.05

DD− CS − p=0.1

CS − p=0.1

Fig. 2. Reconstruction error for standard CS (blue) and proposed scheme
(red) for signals with 5% (’x’) and 10% (’x’) sparsity that have been convolved
with Gaussian filters of σ

2
“ 1.9. We observe that the proposed scheme

achieves better reconstruction in both cases, especially for signals of lower
sparsity and more strongly filtered.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

Sampling Rate

R
o
o
t 

M
e
a
n
 S

q
u
a
re

 E
rr

o
r 

(R
M

S
E

)

Noise−free recovery with blur kernel (σ
2
 = 3.10)

DD−CS − p=0.05

CS − p=0.05

DD− CS − p=0.1

CS − p=0.1

Fig. 3. Reconstruction error for standard CS (blue) and proposed scheme
(red) for signals with 5% (’x’) and 10% (’o’) sparsity that have been convolved
with Gaussian filters of σ

2
“ 3.1. Compared to Fig. 2, we observe that the

proposed DDCS is more robust to more heavily filtered signals compared to
standard CS.
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Fig. 5. Blurring kernel estimation error for various sampling rates for signal
of sparsity equal to 0.02 (solid blue) and 0.05 (dashed red). We observe that
higher sampling rates allow for a more accurate estimation of the kernel while
the estimation process is more challenging at lower sparsity levels.

VI. CONCLUSIONS

In this work we propose an extension of Compressed Sens-

ing for sampling sparse signals that have undergone blurring

with elements drawn from a blur dictionary. The reconstruction

process is modeled as a series of alternating minimization

problems between the spike signal estimation and the esti-

mation of the sparse representation of the blurring kernel.

Simulation results suggest that the proposed reconstruction

scheme is able to achieve higher reconstruction performance

compared to traditional CS based reconstruction schemes.

Future work will include the investigation of different blurring

dictionaries that may be able to encode a wider range of

physical filtering processes.
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