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ABSTRACT
We introduce a novel probabilistic group testing framework,
termed Poisson group testing, in which the number of defec-
tives follows a right-truncated Poisson distribution. The Pois-
son model applies to a number of biological testing scenarios,
where the subjects are assumed to be ordered based on their
arrival times and where the probability of being defective de-
creases with time. Our main result is an information-theoretic
upper bound on the minimum number of tests required to
achieve an average probability of detection error asymptoti-
cally converging to zero.

Index Terms— Boolean compressed sensing, Dynamical
group testing, Information-theoretic bounds, Poisson and Bi-
nomial probabilistic group testing.

1. INTRODUCTION

Group testing (GT) is a method for identifying a group
of subjects with some distinguishable characteristic, fre-
quently referred to as defectives, among a large group of
subjects [1], [2]. The gist of the GT approach is that for
a small number of defectives, one can reduce the required
number of experiments by testing subgroups of subjects. If
a subgroup tests negatively, all items in the subgroup are
eliminated from future screening batches. Otherwise, addi-
tional tests are performed on subgroups of items in order to
narrow down the options for the defectives. Given its simple
working principles and the potential for reducing the cost of
component screening, GT has found many applications in
communication theory, signal processing, bioinformatics and
mathematics [3]-[7].

The test model of the GT framework varies depending on
the application at hand. The original setup, also known as
conventional GT or CGT, was proposed by Dorfman [8] and
includes logical OR computations of the test signatures. More
precisely, in CGT, the result of a test is positive if there ex-
ists at least one defective in the test pool, and negative other-
wise. Many other models have been proposed in the literature,
such as the adder channel, also known as quantitative GT [7],
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threshold GT [9], and symmetric GT [10]. More recent devel-
opments include the semi-quantitative group testing (SQGT)
paradigm, which provides a unifying framework for a num-
ber of GT models and generalizes the notion of GT to non-
binary test matrices and non-binary test outcomes [11], [12].
Note that GT is also closely related to compressed sensing
(CS) [13], [14] and integer compressed sensing [15]; the main
differences lie in the structure of the alphabet used (R or C in
CS, {0, 1} or a discrete set of integers for GT) and the oper-
ations used to perform dimensionality reduction (addition in
CS, Boolean OR in CGT).

The group testing literature may be divided into two cat-
egories based on how the number of defectives is modeled.
In combinatorial GT, the number of defectives or an upper
bound on the number of defectives is fixed and assumed to
be known in advance [7]. On the other hand, in probabilis-
tic GT the number of defectives is a random variable with
a given probability distribution, see for example [8]. With
very few exceptions, the probabilistic GT literature focuses
on a Binomial(n, p0) distribution for the number of defec-
tives. Such a model arises when each of the n subjects is
defective with a fixed probability p0, independent of all other
subjects. Binomial models are not necessarily sparse models,
given that p0 may be taken to be relatively large and given the
probabilistic nature of the defective selection process.

Here, we propose the novel paradigm of Poisson GT that
has a number of useful properties that distinguishes it from
classical binomial models. Although a binomial GT distribu-
tion with p0 � 1 and large n, such that λ = np0 is a constant,
converges to a Poisson distribution [16], our model allows for
the mean of the (truncated) Poisson variable to grow with n,
i.e. λ(n) = o(n). Such a model is suitable in settings were
test subjects are assumed to arrive at different times, and were
tests are performed when a sufficient number of subjects is
present. Furthermore, the assumption λ = o(n) ensures that
the longer the waiting time, the smaller the average relative
fraction of defectives. In other words, the rate of defectives
diminishes with time. Our motivation for these assumptions
comes from clinical testing, where one is trying to identify
infected individuals under the assumption that the infection
will gradually die out. A similar scenario is encountered in
screening DNA clones for the presence of certain DNA sub-
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strings, where the clones are test subjects and defectives are
clones that contain the given substrings. The distribution of
clones containing a given DNA pattern is frequently modeled
as Poisson [7]. Other applications include identifying faulty
items generated by a process, the quality of which improves
with time.

We would like to point out that a number of papers have
considered a Poisson model to capture the dynamics of the
arrivals of subjects to the test center [17], [18] in a streaming
GT scenario. In contrast, our model assumes that the number
of defectives follows a right-truncated Poisson distribution. In
addition, the focus in the aforementioned papers was on the
total amount of time (delay) required to test a batch of sub-
jects arriving at the test center at random times. The focus
of this work is on finding bounds on the smallest number of
tests that ensure that misidentification probability converges
to zero. Other related results include [19]-[24], pertaining to
two-stage (i.e. adaptive) Binomial group testing; in this paper,
we consider nonadaptive GT and extensions of the proposed
Poisson paradigm to adaptive GT and including noisy mea-
surements will be described in the full version of the paper.

The paper is organized as follows. Section 2 introduces
the Poisson GT model, while Section 3 outlines the main re-
sult of the paper: an information theoretic upper bound on
the minimum number of tests required to achieve asymptotic
zero-error average probability.

2. THE POISSON GROUP TESTING MODEL

Let S denote a set of n test subjects, among which a subset
of subjects D are defective. We assume that the number of
defectives follows a right-truncated Poisson distribution with
parameters λ(n) and n, i.e.,

P (D = d) =

{
c(n)λ(n)

d

d! e−λ(n), 1 ≤ d ≤ n
0, otherwise

, (1)

where D = |D| denote the number of defectives, λ(n) is pro-
portional to the expected number of defectives1, while c(n) is
a normalization coefficient such that limn→∞ c(n) = 1. Note
that the parameter λ(n) is assumed to be a function of n, so
that the normalization function c(n) that depends on both n
and λ(n) reduces to a function of n only.

A right-truncated Poisson distribution is closely related to
a finite support version of the non-uniform Bernoulli model
on the set of test subjects, in which the ith subject is defective
with probability pi, 0 ≤ pi ≤ 1, independent of all other test
subjects. From Le Cam’s theorem [25], it is known that the
number of defectives in this model satisfies

∞∑

k=0

∣∣∣∣P{D = d} − e−λ λ
d

d!

∣∣∣∣ ≤ 2

n∑

i=1

p2i , (2)

1It is straightforward to show that the expected value of the right-
truncated Poisson distribution equals λ(n)(1 + ∂

∂ λ
log c(n)) which con-

verges to λ(n) as n→ ∞.

where λ(n) =
∑n
i pi. As an example, one can choose pi =

β
i , β > 0, to obtain a model where individual subjects have
decreasing probabilities of being defective as i increases, so
that λ(n) = O(log n). The approximation error to the Pois-
son distribution scales as 2β ζ(2), where ζ(·) denotes the Rie-
mann zeta function. By choosing β sufficiently small, the
approximation error can be reduced to a desired level. For
a discussion of adaptive and other classes of non-uniform
Bernoulli models, see [19], [20].

Each test includes a subset of the subjects; let m denote
the number of tests 2. The assignment of subjects to different
tests are usually specified via a binary matrix termed the test
matrix, C ∈ {0, 1}m×n. If C(i, j) = 1, for 1 ≤ i ≤ m and
1 ≤ j ≤ n, the jth subject is present in the ith test; on the other
hand, C(i, j) = 0 implies that the jth subject is excluded from
the ith test. The output of a test is equal to 1 if at least one
defective was included in the test, and 0 otherwise. In other
words, the vector of test results y ∈ {0, 1}m is equal to the
Boolean OR of columns of C corresponding to the defectives.
Fig. 1 demonstrates an example of a test matrix, the set of
defectives, and the resulting vector of test results.
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Fig. 1. Example of a test matrix and the test results where
n = 10, m = 4, and the set of defectives is D = {S4, S8}.

We assume that the test matrix is constructed in a proba-
bilistic manner, with each entry of C being an independent,
identically distributed (i.i.d.) Bernoulli(p) random variable;
in other words, each entry of the test matrix is equal to 1 with
probability p, and 0 with probability 1 − p. Given the vec-
tor of test results and the test matrix, the set of defectives is
identified using a maximum likelihood decoder,

D̂ = argmaxP (y|C,D′), (3)

where P (y|C,D′) is the conditional distribution of observ-
ing y given the test matrix C and set of defectives D′. Our
goal is to find an upper bound on the minimum number of
tests m required to ensure that the average probability of er-
ror converges to zero as n→∞. The average is taken over all
realizations of the set of defectives and test matrices. Given
that our derivations are information-theoretic, the complexity
of the decoder is not addressed. Practical structured testing
approaches and efficient decoders will be described in the full
version of the paper.

3. MAIN RESULTS

The main result of our work is that for λ(n) = o(n), a proper
choice of p ensures thatm ≥ (2+δ)λ2+α log nmeasurements

2In the model considered in this paper m is deterministic.
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suffice to achieve an average probability of error converging
to zero, for any δ > 0 and α > 0.

Assume that Dt is the true set of defectives, and let D be
the random variable equal to the cardinality ofDt, denoted by
|Dt|. Let E denote the event that there exists a set of subjects
D 6= Dt such that P (y|C,D) ≥ P (y|C,Dt). Given D = d,
1 ≤ d ≤ n, let Ei, 1 ≤ i ≤ d, denote the event that there
exists a set of subjects with cardinality d, differing from the
true defective set in i items, that is at least as likely as the
true defective given the decoder. Let PE(i, d, n) denote the
probability of Ei. From these definitions, one has

Pe = E [P (E|D)] =

n∑

d=1

c(n)
λ(n)

d

d!
e−λ(n) P

(
∪di=1Ei

)

≤
n∑

d=1

d∑

i=1

c(n)
λd

d!
e−λ PE(i, d, n), (4)

where the last inequality follows from the union bound [16].
At first glance, it may seem that a bound on Pe may be ob-
tained using an upper bound on PE(i, d, n) for a fixed value of
d (such as in [26]) and subsequent averaging; however, there
are two subtle, yet important issues that prohibit us from us-
ing this approach. First, in (4) the value of d, and hence i,
may be as large as n. Since we are interested in asymptotic
results as n → ∞, a bound on PE(i, d, n) should account
for the growth of d and i with respect to n. Second, the
bounds obtained in [26] rely on a test matrix C with i.i.d.
Bernoulli(1/d) entries. However, in Poisson PGT, the true
value of d is unknown (D is a random variable) and cannot be
used as a design parameter.

In order to overcome the aforementioned problems, we
use different functions to bound PE(i, d, n) for different
ranges of d, using new bounds that do not employ the value
of d as a design parameter. In [26], it was shown that for
d = o(n) and for all ρ, 0 ≤ ρ ≤ 1, one has

PE(i, d, n) ≤ 2
−m

(
Eo(ρ,i,d,n)−

ρ log (n−di )(di)
m

)
(5a)

where the error exponent Eo satisfies
Eo(ρ, i, d, n)= (5b)

−log
∑

Y∈{0,1}

∑

T2

(∑

T1

P (t1)P (y, t2|t1,Dt)
1

1+ρ

)1+ρ

.

In these equations, Y is a random variable corresponding to
the result of a single test. Let (D1,D2) be a partition of Dt
into disjoint sets with cardinalities |D1| = i and |D2| = d− i,
respectively. The vectors T1 and T2 are binary-valued row-
vectors of length i and d− i, indicating which subjects in D1

and D2 are present in a given test, respectively.
In order to prove the main results of this section, we need

the following lemma.

Lemma 1. Let f(n) : N 7→ R+. Assume that each entry
of the binary test matrix is an i.i.d. Bernoulli(p) random

variable, such that df(n)e p = o(n). Then ∀i, d such that
1 ≤ i ≤ d ≤ df(n)e, and ∀ρ such that 0 < ρ < 1, one has
the following bound on the error exponent:
Eo(ρ, i, d, n) ≥ ρ(1− p)dip

(
1− ρ

2
log2(ip) + o(1)

)
.

Proof. The proof of the lemma is rather technical and omitted
due to space limitations.

Note that this lemma is a generalization of a lower bound
on Eo(ρ, i, d, n) in [26]. However, the bound in [26] does
not apply for the model considered here, since it addressed a
combinatorial GT setting where the number of defectives d is
assumed to be known and was used as a design parameter.

The next theorem presents the main results for the asymp-
totic regime where log n ≤ λ = o(n). Note that we do not
require that λ ≥ log n, ∀n > 0, but only a bound in the limit
of large n; in other words, we require that ∃n′ > 0, such that
∀n > n′, λ(n) ≥ log n.

Theorem 1. Let λ(n) = o(n), where for sufficiently large n,
λ(n) > log n. Then m ≥ (2 + δ)λ2+α log n tests ensure that
Pe = o(1), for any δ > 0 and α > 0.

Proof. Since λ = o(n), there exists a fixed ε > 0 small
enough such that f(n) := λ(1+ε) = o(n). Choose p =
df(n)e−(1+γ), for some 0 < γ < 1. The probability of error
in formula (4) can be written as Pe = Pe1 + Pe2 , where

Pe1 =

df(n)e∑

d=1

d∑

i=1

c(n)
λd

d!
e−λ PE(i, d, n),

Pe2 =

n∑

d=df(n)e+1

d∑

i=1

c(n)
λd

d!
e−λ PE(i, d, n).

The idea is to bound these probabilities by finding a tight up-
per bound on PE(i, d, n), independent of i and d, for 1 ≤
d ≤ df(n)e, while using the upper bound PE(i, d, n) ≤ 1 for
df(n)e+ 1 ≤ d ≤ n.

First, note that the modes of a standard Poisson distribu-
tion with parameter λ are equal to bλc and dλe − 1. Hence,

argmax
d

λ(d−1)

(d− 1)!
≤ bλc+ 1 ≤ dλe+ 1,

and for any d ≥ dλe + 1, the aforementioned function is
monotonically decreasing. Since df(n)e+1 ≥ dλe+1, then

max
d:df(n)e+1≤d≤n

λd

(d− 1)!
=

λ
df(n)e+1

(df(n)e)!
.

Now, one has

Pe2 =

n∑

d=df(n)e+1

d∑

i=1

c(n)
λd

d!
e−λ PE(i, d, n)

≤
n∑

d=df(n)e+1

c(n)
λd

(d− 1)!
e−λ

≤ n c(n) max
d:df(n)e+1≤d≤n

λd

(d− 1)!
e−λ

≤ exp (−εdf(n)e log λ+ o(df(n)e log λ)) = o(1).
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Since we have chosen p = df(n)e−(1+γ), for some 0 <
γ < 1, using Lemma 1 one can show that ∀i, d, 1 ≤ i ≤ d ≤
df(n)e and ∀ρ, 0 < ρ < 1,

Eo(ρ, i, d, n) ≥ ρ(1− p)dip
(
1− ρ

2
log2(ip) + o(1)

)

≥ ρ p(1− p)df(n)e
(
1− ρ

2
log2(p) + o(1)

)

≥ ρ (1 + o(1))

(f(n)+1)1+γ

(
1− ρ

2
(1+γ)2 log2(f(n)+1)

)
.

Now, by choosing ρ = 1
(1+γ)2 log2(f(n)+1)

, one arrives at

Eo(ρ, i, d, n) ≥
1

2

ρ

(f(n) + 1)1+γ
(1 + o(1)),

for any i, d such that 1 ≤ i ≤ d ≤ df(n)e. In addition, using
the inequality

(
d
i

)
≤
(
de
i

)i
, it can be easily shown that for

1 ≤ i, d ≤ df(n)e, it holds that

log

(
n− d
i

)(
d

i

)
≤ f(n) log n (1 + o(1)).

As a result, if

m >
ρf(n) log n
1
2

ρ
(f(n)+1)1+γ

(1 + o(1)) = 2f(n)
2+γ

log n (1 + o(1)),

then the exponent in (5) is positive. Therefore, by using m ≥
(2 + δ)f(n)2+γ log n for any fixed δ > 0, we may write

PE(i, d, n) ≤ 2
−m

(
Eo(ρ,i,d,n)−

ρ log (n−di )(di)
m

)

≤ 2
−mρ

(
1
2

1+o(1)

(f(n)+1)1+γ
− f(n) logn(1+o(1))

m

)

= 2
− δ lognf(n)

(1+γ)2 log2f(n)
(1+o(1))

:= P1(n).

Since

Pe1 =

df(n)e∑

d=1

d∑

i=1

c(n)
λd

d!
e−λ PE(i, d, n)

≤ c(n)P1(n)

df(n)e∑

d=1

d
λd

d!
e−λ

≤ c(n)P1(n)

∞∑

d=1

d
λd

d!
e−λ = c(n)P1(n)λ(n),

it follows that

Pe1 ≤ c(n)λ(n)P1(n)

= 2
− δ lognf(n)

(1+γ)2 log2f(n)
(1+o(1))

= o(1).

Consequently, the probability of error converges to zero, i.e.,
Pe = o(1) if m ≥ (2 + δ)f(n)2+γ log n, for any fixed δ > 0
and γ > 0. Substituting f(n) = λ1+ε in the previous expres-
sion, and performing some straightforward simplifications re-
duces the bound to m ≥ (2 + δ)λ2+α log n, for δ > 0 and
α > 0.

Let log(K) n := log log · · · log︸ ︷︷ ︸
K times

n, for an integer K ≥ 1,

and let log(0) n := n. The next theorem states the main results
for the case when asymptotically, λ(n) < log n. The idea is
to confine the growth of λ(n) = o(n) between log(K) n and
log(K−1) n for some K > 1, and prove the results for such
bounded values of λ(n).

Theorem 2. Let log(K) n ≤ λ < log(K−1) n, for some K >
1 and for sufficiently large n. Then m ≥ (2 + δ)λ2+α log n
tests suffice to ensure Pe = o(1), for any δ > 0 and α > 0.

Proof. The proof of this theorem is similar to the proof of
Theorem 1. As a result, and due to space restrictions, we only
describe the sketch of the proof. First, we write a bound on
the probability of error as

Pe ≤
n∑

d=1

d∑

i=1

c(n)
λd

d!
e−λ PE(i, d, n) =

K+1∑

k=1

Pek ,

where

Pe1 =

df(n)e∑

d=1

d∑

i=1

c(n)
λd

d!
e−λ PE(i, d, n),

Pe2 =

dlog(K−1) ne∑

d=df(n)e+1

d∑

i=1

c(n)
λd

d!
e−λ PE(i, d, n),

Pek =

dlog(K−k+1) ne∑

d=dlog(K−k+2) ne+1

d∑

i=1

c(n)
λd

d!
e−λ PE(i, d, n),

where k ∈ {3, . . . ,K + 1}. In our proof, we first show that
Pek = o(1), ∀k ∈ {2, 3, . . . ,K +1}. Then, we use Lemma 1
to show that by choosing p = df(n)e−(1+γ) for some 0 <
γ < 1, m ≥ (2 + δ)λ2+α log n, we can also ensure that
Pe1 = o(1), for any δ > 0 and α > 0.

In [26], information-theoretic arguments were used to
show that for nonadaptive combinatorial GT, and d = o(n),
m = O(d log2 d log n) measurements ensure that the prob-
ability of error converges to zero. In our setup, even though
the average number of measurements is asymptotically equal
to λ(n), we need O(λ2+α(n) log n) measurements due to
the probabilistic nature of the number of defectives. In the
well-studied adaptive Binomial(n, p0) group testing scenario
of [24], it was shown that when p0 = n−β , β ∈ (0, 12 ), the
expected number of measurements needed for asymptotically
accurate detection equals E(m) = O(np0| log p0|). Although
the Poisson GT model considered in this paper represents a
generalization of the model described in [24], we would like
to point out that setting p0 = λ/nwe obtain an approximation
of E(m) = O(λ(n) log n) tests needed for accurate Poisson
GT. This reduction in the cost of measurements stems from
the adaptive nature of the GT scheme in [24] as compared to
the non-adaptive approach studied in this manuscript.
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