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ABSTRACT
In this paper, the side information (SI)-aided compressed sensing
reconstruction is considered, where a sparse signal is observed via a
noisy underdetermined linear system, and a SI is available during the
reconstruction. We develop a SI-aided approximate message passing
(SI-AMP) algorithm to solve the problem. Based on the correspond-
ing state evolution formula, the asymptotic prediction performance
and noise-sensitivity analysis of the scheme are derived. Simulation
results are presented to verify the efficiency of the proposed method.

Index Terms— Side information, approximate message pass-
ing, phase transition, prediction

1. INTRODUCTION AND RELATION TO PRIOR WORK

Recently, compressed sensing of sparse signals has been extensively
studied. Many algorithms have been developed for the reconstruc-
tion of these signals, including, e.g., convex optimization [1], greedy
method [2], and iterative thresholding [3]. To analyze and compare
the performances of different reconstruction algorithms, restricted
isometry property (RIP) [1] and coherence property [2] are two pos-
sible tools. However, they can only provide loose bounds on the
reconstruction error, and cannot be used to study the exact perfor-
mances of an algorithm.

Another approach is to analyze the performance of CS algo-
rithms via estimation theory. In [4], using the replica method that has
been widely used in statistical physics, a sharp prediction is derived
for the performance of the ℓ1-regularized least squares problem, or
LASSO [5]. However, the replica assumption is not rigorous and it
cannot be checked for specific problems.

In [6,7], a fast approximate message passing (AMP) algorithm is
developed, based on the classic message passing framework [8]. The
AMP is rigorous and can predict the performance of the algorithm
accurately. More importantly, it offers a unified framework to exploit
further information about the original signal, e.g., structural priors
[7], and Gaussian mixture distribution [9].

In many applications, there exists an initial estimation of the
sparse signal x as a side information (SI) for reconstruction. For ex-
ample, adjacent frames in a video sequence are usually very similar.
Therefore, an estimation of the current frame can be obtained us-
ing motion estimation [10]. Similarly, in multiview video systems,
videos in neighboring views also exhibit strong correlation. There-
fore, disparity estimation and depth-based image rendering tech-
niques can be used to obtain a prediction of a view from neighboring
views [11–14].

There have been some approaches that attempt to exploit vari-
ous SI in CS. One example is the CS problem with partially known
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support [15]. In addition, although bounds on reconstruction error
are derived in [15], the exact performance of the algorithm is still
unknown. Another relevant scheme is to recover the estimation er-
ror instead of the sparse signal [16], by assuming that the prediction
error between the SI and the sparse signal is sparser than the sig-
nal itself. However, this method lacks theoretical analysis. It is also
possible that the prediction error is denser than the original signal,
if the initial estimation has poor quality. In [14], a squared-error-
constrained penalty term is introduced to the compressed sensing of
multiview images. It also considers a more general case, where the
variances of the prediction errors are different at different entries.

In [17], the belief-propagation-based CS framework (BPCS) in
[18] is used to exploit the SI from neighboring cameras in multiview
image systems, although the SI is only used as the starting point for
belief propagation.

In this paper, a new model is proposed that in addition to
compressed measurements, we can still get a noisy version of the
sparse signal. The most relevant framework to ours is the sparsity-
constrained dynamic system estimation scheme proposed in [19]
and dynamic compressed sensing via approximate message passing
(DCS-AMP) proposed in [20, 21]. In [19], a prediction of the signal
is obtained from the state evolution model, and the norm of the
prediction error is added as a penalty term in the objective function
of LASSO or BPDN method [5, 22]. In [20, 21], the authors model
the sparse signal as Bernoulli-Gaussian distribution and the corre-
lation between active amplitudes in differetn time slots following
stationary steady-state Gaussian-Markov process. Expectation max-
imization (EM) and AMP are applied to learn the hidden parameters
and do inference. Note that although the model in [20], [21] is
similar to ours, the proposed algorithms rely on the sequential data,
can’t be applied to solve the problem discussed here directly and is
not the main focus of this work.

Such model is prevalent in hybrid distributed sensor network,
where because of the low sampling cost of compressed sensing based
hardware, some sensors apply compressed sensing based hardware
to sense the environment which is sparse in certain basis, e.g., AIC
(analog-to-information converter) [23], while other sensors use tra-
ditional ADC (analog-to-digital converter). After the data are col-
lected, each sensor sends their data to the central unit to recover
the sparse signal jointly. The problem is how to efficiently fuse the
compressed measurements and the noisy Nyquist samples. To the
best of our knowledge, such problem hasn’t been addressed before,
although some other papers discussed distributed compressed sens-
ing [24].

Moreover, an important question we address in this paper is :
Can me measure how much this SI improves the performance of
estimation compared to the classical case without this prior. Sev-
eral papers have considered similar problems [15], [25]. In [15],
the authors have provided guarantees on the performance of simi-
lar problems. However, the results are usually inconclusive because
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of the loose constant involved in the analyses. Kamilov et al. [25]
have tried to provide a theoretical understanding of expectation max-
imization based algorithms [20, 21]. However, the complete under-
standing of the expectation maximization employed in such methods
is not available yet.

In this paper, we develop a fast AMP-based framework to solve
the SI-aided LASSO problem, denoted as SI-AMP. We then study
its state evolution, which enables the accurate prediction of the MSE
performance of the SI-AMP algorithm. We also derive the noise-
sensitivity analysis of SI-AMP, and show that different from the con-
ventional CS framework, the MSE of the reconstruction using SI-
AMP is bounded everywhere int the sampling space and the phase
transition doesn’t exist any more, thanks to the SI. Simulation re-
sults show that the SI-AMP algorithm can achieve better reconstruc-
tion than the conventional method. Due to space limitation, some
detailed derivations of the main results in the paper are skipped, and
the details can be found in the journal version [26].

2. THE SI-AIDED LASSO PROBLEM

In compressed sensing, the observation is given by y = Ax + w,
where x ∈ Rn is a k-sparse signal, i.e., with k nonzero entries (k ≪
n), A ∈ Rm×n is a known linear measurement matrix, with m <
n, and w ∈ Rm is the additive noise, often assumed to be white
Gaussian with variance σ2, i.e., w ∼ N (0, σ2I). In this paper, the
entries of A follow i.i.d. Gaussian distribution N (0, 1/m), and A
has zero column mean and unit column norm. The following ratios
are also frequently used in the paper.

δ = m/n, ε = k/n, ρ = ε/δ = k/m. (1)

The LASSO is a frequently used algorithm to reconstruct sparse
signals, which is an ℓ1-regularized least square optimization [5]:

x̂(λ, τs) = argmin
z∈Rn

(
1

2
∥y −Az∥22 + λ∥z∥1

)
. (2)

An important fact is that the solution of LASSO is equivalent to
the soft thresholding algorithm in wavelet denoising [27],

x̂λ(i) = η(y(i);λ), (3)

where the soft thresholding operation with threshold θ is

η(x; θ) =


x− θ if x > θ,

0 if − θ 6 x 6 θ,

x+ θ if x < −θ.

(4)

The threshold in (3) can be chosen as λ = ασ, where α is a
scaling parameter. The MSE of the soft thresholding algorithm can
thus be written as

mse(σ2; p, α) ≡ E{[η(X + σZ;ασ)−X]2}, (5)

where the expectation is with respect to independent random vari-
ables Z ∼ N (0, 1) and X ∼ p.

For k-sparse X with ε = k/n as in (1), we define the following
set of probability measures with small non-zero probability,

Fε ≡ {p : p is a probability measure with p({0}) > 1− ε}. (6)

Thanks to the scale invariance of soft thresholding method [6],
we only need to focus on σ = 1 when studying the noise sensitivity

of soft thresholding method. In this case, the minimax threshold
MSE of the method is defined as [6]

M±(ε) = inf
α>0

sup
p∈Fε

mse(1; p, α) (7)

which is the minimal MSE of the worst distribution in Fε, where ±
means a nonzero estimate can take either sign.

In terms of Bayesian theory, the LASSO framework is equiva-
lent to adding a zero-mean Laplace prior distribution of x and then
finding the maximum a posteriori (MAP) estimation.

In this paper, we assume that a SI or initial estimation of x, de-
noted by x̃, is available during reconstruction, which can be seen as
a noisy version of x. The error of the SI, e = x̃−x, is assumed to be
white Gaussian with variance σ2

s , i.e., e ∼ N (0, σ2
sI). In this case,

if we apply the MAP theory to estimate x, the solution becomes the
following SI-aided LASSO (SI-LASSO) framework [26], where an
ℓ2-norm term is added to incorporate the SI. This provides a theoret-
ical justification to the framework in [19].

x̂(λ, τs) = argmin
z∈Rn

(
1

2
∥y −Az∥22 + λ∥z∥1 +

τs
2

∥x̃− z∥22

)
.

(8)
The parameters λ and τs are closely related to σ2

s , the noise
variance of the SI. The conventional LASSO is a special case of SI-
LASSO with τs = 0. Another extreme case is when the SI equals to
the original signal. In this case, we should set τs = ∞, and the final
reconstruction result is simply x̃.

3. SI-AIDED APPROXIMATE MESSAGE PASSING

The LASSO problem can be solved by several methods, such as in-
terior method and gradient method. In this paper, we are interested
in the AMP algorithm [6, 7], which enjoys several advantages, e.g.,
low complexity and the capability of predicting the performance.

For Gaussian matrix A, conventional message passing algo-
rithms such as the min-sum method needs to calculate 2mn mes-
sages in each iteration. However, in AMP [6, 7], by employing
quadratic approximation and the properties of the soft thresholding
and the Gaussian matrix A for large values of m and n, the expres-
sion of each message can be simplified, and the number of messages
can be reduced to m+ n. The final formulae can be expressed as

x̂t
0 = xt +AT rt,

xt+1 = η(x̂t
0; θt),

rt = y −Axt +

∥∥xt
∥∥
0

m
rt−1 ≡ y −Axt + btr

t−1,

(9)

where the n entries in xt are the estimate of x in the t-th iteration,
and the m entries in rt are the residual with respect to the observa-
tion. x̂t

0 is the un-thresholded updated estimation of x. η(:, :) is the
soft thresholding in (4), and bt is a forgetting or reaction factor when
updating the residual. It turns out that the AMP algorithm is very
similar to the iterative soft thresholding algorithm [27]. The only
difference is the introduction of the term btr

t−1. However, this term
significantly improves the performance of the algorithm.

In addition to lower complexity, the AMP also allows us to pre-
dict the final reconstruction performance of LASSO if necessary pa-
rameters are given, by solving the fixed-point equation of state evo-
lution derived from the formulae above.

To derive the SI-aided AMP, we start by modifying the local
function of each variable node to be λ |xi| + τs

2
(xi − x̃i)

2. After
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this, following the derivation of AMP, the proposed SI-AMP algo-
rithm can be obtained as (details in [26])

x̂t
0 =

ut

1 + ut
x̃+

1

1 + ut
(xt +AT rt),

xt+1 = η(x̂t
0; θt),

rt = y −Axt +

∥∥xt
∥∥
0

m(1 + ut−1)
rt−1 ≡ y −Axt + btr

t−1,

(10)

Comparing (9) and (10), the SI-AMP introduces a weighted av-
erage of the SI x̃ and xt + AT rt, and the weighting parameter is
controlled by ut. In addition, the reaction factor bt is also a function
of ut−1. This enables SI-AMP to fully exploit the SI and improve
both the theoretical and empirical performances of AMP. When there
is no SI, ut = 0, SI-AMP reduces to AMP.

The following proposition shows that SI-AMP provides a very
general solution for the SI-LASSO problem in Eq. (8) [26].

Proposition 3.1 Let (x∗, r∗) be the fixed point of the SI-AMP algo-
rithm given by (10) for fixed θt = θ, ut = u, and bt = b. Then x∗

is also a minimum of the SI-LASSO problem in (8) with

λ = (1 + u)θ(1− b),

τs = u(1− b).
(11)

When there is no SI (u = 0), the result above reduces to Prop.
5.1 in [7] for LASSO.

3.1. SI-AMP State Evolution

One attractive feature of AMP is that it gives the formula for the evo-
lution of the MSE of the estimation during the iteration [7], which
allows us to accurately predict the final MSE by solving a fixed-point
equation. We now derive the MSE state evolution of the SI-AMP. We
will also show that there is also a state evolution for the SI weighting
parameter ut in (10), which is not available in the AMP.

The unthresholded estimator in (10) includes the SI, residual rt

and interference xt. Let sri be its estimation variance, which can be
found to be (Appendix A in [26])

sri(q2t , ut; δ, σ, σs) = (
ut

1 + ut
)2σ2

s + (
1

1 + ut
)2(σ2 +

q2t
δ
), (12)

where q2t is the variance of the thresholded estimator xt.
The optimal ut should minimize the sri above. Taking derivative

of ut and setting it to 0, the optimal ut can be found to be

ut =
σ2 + q2t /δ

σ2
s

. (13)

Therefore, if the quality of the SI is higher than xt +AT rt, we will
have ut > 1, the SI will have more weights in constructing the next
unthresholded estimate in (10). As the decrease of q2t , it is possible
to have ut < 1, i.e., the impact of the SI will be gradually reduced.

To find q2t+1, the variance of the thresholded estimate xt+1 in
(10), we need to use (5). Let

Ψ(q2t , ut; δ, σ, σs, α, p) ≡ mse(sri(q2t , ut; δ, σ, σs); p, α). (14)

Since (δ, σ, σs, α, p) are fixed, we can use (q2t , ut) to represent
the state of the algorithm in the t-th iteration. The state evolution for
q2t can thus be written as

q2t+1 = Ψ(q2t , ut). (15)

Eq. (13) can be viewed as the state evolution of ut, which is not
available in AMP.

To find the final MSE, we substitute ut in Eq. (13) to Eq. (12),
sri can be simplified into

sri(q2t ) =
σ2
s(σ

2 + q2t /δ)

σ2
s + σ2 + q2t /δ

. (16)

When the algorithm converges, the steady-state or fixed-point
condition of the state evolution in (15) is

q2∗ = Ψ(q2∗,
σ2 + q2∗/δ

σ2
s

) = mse(sri(q2∗); p, α). (17)

Define sri(q2∗) as a new variable ξ2, and plug (17) into (16), we
can get the following fixed-point equation for ξ2.

ξ2 =
σ2
s(σ

2 + mse(ξ2; p, α)/δ)
σ2
s + σ2 + mse(ξ2; p, α)/δ

≡ F (ξ2, α). (18)

With an appropriate choice of α (Prop. 4.3 in [26]), the fixed-
point equation has a unique solution ξ∗, which is the final MSE per-
formance of the SI-AMP algorithm.

4. NOISE SENSITIVITY ANALYSIS OF SI-AMP

The noise sensitivity phase transition is a curve in the (ρ, δ) plane,
indicating the sensitivity of a CS reconstruction method to the noise
variance in the measurement [6], where ρ = k/m and δ = m/n,
as defined in (1). For many classical CS algorithms, the MSE under
the phase transition curve is bounded, and the MSE is unbounded
above the curve. In this section, we show that because of the SI, the
phase transition diminishes, and the MSE is bounded everywhere in
the sampling space and the phase transition property of classical CS
problem is just a special case where the variance of the SI is ∞.

In this section, several minimax risks are used. M±(δρ) is de-
fined in (7). Mb(δ, ρ) and M∗(δ, ρ, γ2

s ) are the minimax risk of
LASSO and SI-LASSO respectively. The parameter γ2

s = σ2
s/σ

2

plays an important role, which measures the relative quality of the SI
with respect to the quality of underdetermined linear measurements.

The following result shows that for any point in the sampling
space , the minimax risk of SI-LASSO is bounded.

Proposition 4.1 For any point in the sampling space, i.e., ρ < 1/δ,
i.e., ε = δρ 6 1, the SI-LASSO minimax risk is bounded, and M∗ is
given by

M∗(δ, ρ, γ2
s ) =

2δγ2
sM

±(δρ)

G(δ, ρ, γ2
s ) +

√
G(δ, ρ, γ2

s )
2 + 4δγ2

sM±(δρ)
,

(19)
where G(δ, ρ, γ2

s ) = δγ2
s + δ − γ2

sM
±(δρ).

The corresponding parameter selection rules for minimax risk
case are listed in Proposition 5.1 of [26].

It is easy to verify that ∂M∗(δ, ρ, γ2
s )/∂γ

2
s is monotonically in-

creasing, so M∗(δ, ρ, γ2
s ) is an increasing function of γ2

s . Since SI-
AMP reduces to AMP when γ2

s = ∞, this means that the minimax
bound of SI-LASSO is no greater than that of LASSO, i.e.,

M∗(δ, ρ, γ2
s ) 6 Mb(δ, ρ) =

M±(ρδ)

1−M±(ρδ)/δ
, (20)

where Mb(δ, ρ) is the bound of LASSO minimax risk.
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δ ρ h∗ λ∗ τ∗ fMSE eMSE eMSE fMSE eMSE eMSE
(SI-AMP) (SI-OWLQN) (SI-AMP) (AMP) (OWLQN) (AMP)

0.1000 0.0950 2.8279 2.5845 0.9953 0.0329 0.0316 0.0326 0.1362 0.1193 0.1276
0.1000 0.1800 2.7988 2.2226 0.9920 0.0577 0.0582 0.0576 2.0626 1.9584 3.1587
0.1000 1.9000 2.6558 0.9194 0.9513 0.4054 0.4045 0.4057 UB UB UB
0.250 0.1340 2.5808 2.0253 0.9954 0.0858 0.0913 0.0875 0.3738 0.3689 0.3659
0.2500 0.2540 2.5287 1.6631 0.9924 0.1447 0.1453 0.1483 5.5758 6.6647 5.6803
0.2500 1.9000 2.2759 0.5112 0.9729 0.6185 0.6252 0.6264 UB UB UB
0.5000 0.1930 2.3619 1.5123 0.9954 0.1815 0.1837 0.1839 0.8528 0.8447 0.8559
0.5000 0.3660 2.2846 1.1402 0.9930 0.2908 0.2957 0.2903 12.4266 15.6648 12.1652
0.5000 1.9000 1.2526 0.0469 0.9859 0.6887 0.6890 0.6962 UB UB UB

Table 1. Empirical and predicted MSEs of different methods for points in the sampling space

When there is no SI, the formal MSE noise sensitivity above the
phase transition is infinite. However, this is no longer the case in the
presence of the SI, as we can at least assign τs to ∞ while keeping
λ to be finite, and the formal MSE noise sensitivity is thus bounded
by γ2

s . We can do even better by exploiting the measurement and
the sparsity of the original signal, which still follows the statement
above.

There are three extreme cases here: First, let γ2
s = ∞, then

Equ. (19) degrades to the formulae of bounded MSE below the
phase transition boundary of AMP. Second, if γ2

s = 0, i.e., the
side information is exactly the same as the unknown sparse signal,
we don’t need to do reconstruction, and MSE is 0 which coincides
with Equ. (19) where γ2

s = 0. Last, if δ = 0, which means there
is no compressed measurements, solving the minimization problem
(8) is equal to do denoising in scalar case, and the minimax MSE is
M±(ρδ)σ2

s , which also agrees with the denoising of scalars intro-
duced in the background part of [6].

5. NUMERICAL EXPERIMENTS

We first evaluate the accuracy of the MSE of the SI-LASSO pre-
dicted by SI-AMP, and compare SI-LASSO with the LASSO. The
entries of x0 are randomly chosen from {+1, 0,−1} with probabil-
ities P (x0,i = +1) = P (x0,i = −1) = 0.064. The variance of
the noise w is σ2 = 0.2. The SI x̃ is obtained by adding to x0 a
zero-mean Gaussian noise vector e with variance σ2

s = 0.2γ2
s .

In this experiment, two values of n are tested, n = 200 and n =
2000 respectively. For n = 200, the empirical results of LASSO
are obtained by CVX [28], which is an interior point-based convex
solver written in Matlab. The empirical results of SI-LASSO are
obtained by modifying CVS to incorporate the SI. For n = 2000, the
empirical results of LASSO are obtained by OWLQN [29], which is
a large-scale LASSO solver written in C++. The empirical results of
SI-LASSO in this case are obtained by modifying the OWLQN to
incorporate the SI.

Fig. 1 shows the predicted and empirical MSEs of LASSO and
SI-LASSO. When γ2

s = ∞, SI-LASSO reduces to LASSO, we get
the same curve as Fig. 9 in [7]. In each case, the predicted MSE
is quite accurate in both LASSO and SI-LASSO. When γ2

s = 4,
the minimal MSE of SI-LASSO is 20% less than LASSO. When
γ2
s = 1, the SI is more accurate, and the minimal MSE is 60% less.

We now compared the performances of LASSO and SI-LASSO
for n = 2000. In addition to SI-OWLQN, we also implement the
SI-AMP in (10) by Matlab. We generate in each case 20 random re-
alizations, with parameters δ ∈ {0.10, 0.25, 0.50}, γ2

s = 1, σ2 = 1
and ρ ∈ { 1

2
ρ(δ), 19

20
ρ(δ), 1.9}. The results are summarized in Table

1, where eMSE and fMSE denote the empirical MSE and theoretical
MSE respectively. The optimal λ and τ are also listed. Note that
ρ = 1.9 is far above the phase transition of AMP, and it’s very close

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

λ

M
S
E

SI−LASSO, γ
s

2
 = 4

LASSO

SI−LASSO, γ
s

2
 = 1

Black lines −−−−−−−− Prediction

Blue markers −−−−−−− Empirical, n = 200

Red markers −−−−−−−− Empirical, n = 2000

Fig. 1. The predicted and empirical MSEs of LASSO and SI-LASSO
with different λ and γ2

s . The sample rate is δ = 0.64.

to the maximum ρ for δ = 0.5 where the maximum ρ is 2.
Some observations can be drawn from Table 1. First, the MSE

in SI-AMP is much lower than that in AMP. Secondly, the fMSE and
eMSE of SI-AMP match very well, even when the operating point
is far above the phase transition boundary of AMP. For example,
for δ = 0.100, the fMSE of SI-AMP with ρ = 1.9 is still very
similar to the eMSE. For AMP, this ρ is much higher than its phase
transition boundary. Its MSE is thus unbounded and represented by
”UB” in the table. In addition, the empirical MSE of SI-OWLQN
is very similar to that of SI-AMP. However, SI-OWLQN is much
slower. For example, in a computer with Intel Core i7 3.07GHz
CPU and 6.00 GB memory, our Matlab implementation of SI-AMP
is already about 10 times faster than the C++ implementation of SI-
OWLQN. This is because OWLQN needs to calculate the gradient
in each iteration.

6. CONCLUSIONS

This paper studies the side-information (SI)-aided CS problem,
where an additional noisy version of the original signal is available
for CS reconstruction which is prevalent in hybrid distributed sen-
sor network. We formulate a SI-LASSO problem from the MAP
rule, develop a SI-aided approximate message passing algorithm
(SI-AMP), and study its state evolution and noise sensitivity. Com-
pared to conventional LASSO algorithms, the better performance of
SI-AMP has been verified both theoretically and experimentally.
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