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ABSTRACT

In this paper we extend attribute-based lattice rescoring to
spontaneous speech recognition. This technique is based
on two key features: (i) an attribute-based frontend, which
consists of a bank of speech attribute detectors followed
up by an evidence merger that generates confidence scores
(e.g., sub-word posterior probabilities), and (ii) a rescoring
module that integrates information generated by the frontend
into an existing ASR engine through lattice rescoring. The
speech attributes used in this work are phonetic features,
such as frication and palatalization. Experimental results
on the Switchboard part of the NIST 2000 Hub5 data set
demonstrate that the proposed approach outperforms LVCSR
systems based on Gaussian mixture model/ hidden Markov
model (GMM/HMM) that does not use attribute related in-
formation. Furthermore, a small yet promising improvement
is also observed when rescoring word-lattices generated by
a state-of-the-art ASR system using deep neural networks.
Different frontend configuration are investigated and tested.

Index Terms— Lattice Rescoring; Artificial Neural Net-
works, Phonetic Features, Automatic Speech Recognition.

1. INTRODUCTION

The top-down automatic speech recognition (ASR) approach,
based on hidden Markov models (HMMs) (e.g., [1]), has
enjoyed more than 30 years of technology advances (e.g.,
[2, 3, 4]), and it has thus been the leading paradigm to tackle
the speech-to-text problem. Recently, its performance has
been further enhanced by modeling frames of coefficients
that represent the acoustic input with deep neural networks
(DNNs) [5]. Indeed, a remarkable performance has been at-
tained in many large vocabulary continuous speech recogni-
tion (LVCSR) tasks [6, 7, 8, 9] with the DNN/HMM solution.
As an example, in the early 90’s, a high error rate of over
40% was reported on the Switchboard task [10], but this error
was reduced to the order of 20% (see [6], for example) us-
ing discriminative training (e.g., boosted maximum-mutual-
information [11]), and feature space adaptation techniques
(e.g., feature space maximum likelihood linear regression
(fMLLR) [12]) when the acoustic observations are modeled
with Gaussian mixture models (GMMs). In 2011, this error

was further reduced down to 16% using a DNN/HMM acous-
tic model [6]. A 12% error rate was recently reported by
employing DNN-derived acoustic features in GMM/HMM
based acoustic models [9] and using 2000-hour training data.
Although given these positive results, LVCSR errors are still
rather high when compared with the recognition performance
on read speech. In spontaneous speech, ill-formed utterances
are often observed that cannot be completely characterized,
even if a large amount of training speech data is collected to
build language models.

Several speech researchers have tried to employ knowl-
edge sources in speech production (e.g., [13, 14]) and au-
ditory processing and perception (e.g., [15, 16, 17] to miti-
gate some of the ASR limitations. Many of these sources are
not easily integrated into the conventional top-down ASR sys-
tems, and alternative multi-stage (a.k.a. stage-by-stage) ASR
paradigms, which could ease this integration, have been ex-
plored. For example, a good performance was demonstrated
in a speech understanding task by using key phrase detec-
tion followed by utterance verification [18]. New theories of
nonlinear phonology, articulatory phonology, and landmark-
based speech perception were employed in [19] to design a
segment-based, multi-stage recognizer. In [20], the authors
argued that speech features and lexical words are inherently
correlated in natural language and demonstrated that better
recognition accuracies can be obtained by jointly optimizing
acoustic and linguistic parameters according to the maximum
entropy principle. In the automatic speech attribute transcrip-
tion (ASAT) framework [21], ASR is seen from a bottom-up
and “divide-and-conquer” perspective. ASAT aims at identi-
fying acoustic and linguistic information not fully exploited
by the current top-down ASR paradigm. Within the ASAT
paradigm a new family of lattice-based speech recognition
systems grounded on accurate detection of speech attributes
was implemented. It was demonstrated that high-accuracy
phoneme recognition can be built within this framework [22].
Moreover, the lattice rescoring approach can be extended to
LVCSR [23, 24] with good results on read speech.

Although most of those alternative ASR paradigms have
overcome ASR limitations only on specific speech tasks,
we believe that bottom-up, stage-by-stage paradigms will be
proven to be useful as more knowledge sources will become
available. This paper is thus our first attempt to extend the
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ASAT lattice rescoring technique from read to spontaneous
speech. Specifically, the lattice rescoring approach is evalu-
ated on the Switchboard task. With respect to our previous
implementation, several modifications have been introduced
and evaluated, namely DNNs have been used to implement
the set of ASAT detectors, and senone output classes have also
been evaluated at the merger level. Furthermore, rescoring
was applied to word lattices generated by either GMM/HMM
or DNN/HMM ASR systems.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a brief survey of the ASAT framework. Sec-
tion 3 describes the ASAT lattice recognition algorithm. Next,
the experimental setup is reported in Section 4. The experi-
mental results are given and discussed in Section 5. Finally
we summarize our findings in Section 6.

2. A GLIMPSE INSIDE ASAT

The ASAT detection-based front-end consists of two key el-
ements: (a) a bank of attribute detectors that can produce
detection results together with confidence scores, and (b) an
evidence merger that combines low level events (attribute
scores) into higher level evidence, such as phoneme poste-
riors. The outputs delivered by the attribute detectors can
be stacked together for a given input in order to generate a
supervector of attribute detection scores. This supervector is
fed into the evidence merger. In practice, this front-end maps
acoustic features into posterior probabilities. An intermediate
transformation is accomplished by a bank of speech attribute
detectors that scores events embedded into the speech sig-
nal. For English, which is what we evaluate in this paper, an
attribute detector is built for each of the following phonetic
features: fricative, nasal, stop, approximant, coronal, dental,
glottal, labial, low, mid, retroflex, velar, anterior, back, con-
tinuant, tense, voiced. The merger discriminates among either
context-independent phoneme classes or context-dependent
phoneme (senone) classes.

Attribute detectors and event merger used through all ex-
periments in this paper are implemented using a feed-forward
multi-layer perceptron (MLP) networks with either a single
hidden layer, or multiple hidden layers. In both cases, MLPs
are designed for estimating class posterior probabilities in a
discriminative way. The conditional probability of a class la-
bel y given an input vector x is estimated using a nonlinear
model of the form

p̂k = p̂(y = k|x) = exp gk∑N
i=1 exp gi

, (1)

where gk is the linear activation function of the kth output.
The sigmoidal activation function is used as non-linearity

in hidden neurons. The training protocol follows the clas-
sical stochastic back-propagation algorithm used to train the

neural networks [25]. Furthermore, the cross-entropy crite-
rion, which measures a “distance” between probability distri-
butions, is adopted as the criterion function for training phase.
To avoid over-fitting during the training process, the reduction
in classification error on the development set was adopted as
the stopping criterion.

3. ASAT LATTICE RESCORING

ASAT word lattices rescoring [23] is implemented as follows:
each arc in a lattice corresponds to a word in a string hypoth-
esis. A score at the end of each word, a word-level score,
WS, is obtained by summing up the scores, PSi, of each
phoneme/senone composing that word. Thus WS is a lin-
ear combination of phoneme/senone scores. In turn, PSi is
computed by summing up all of (log) posterior probabilities,
optionally discounted by the prior probability, generated by
the MLP for that class. The weighted rescoring formula is
defined as

Sn = w1 Wn + w2 Ln, (2)

where Wn is defined as Wn =
∑K

i=1PSi
n. PSi

n is the score
of the i-th phoneme/senone in the n-th arc, K is the num-
ber of phonemes/senones in the word associated with the n-th
arc, w2 is the interpolation weight of the log-likelihood score
computed by the LVCSR baseline system, Ln,and w1 is the
interpolation weight of the word-level score.

4. EXPERIMENTAL SETUP

4.1. Corpora

We evaluate the effectiveness of the ASAT lattice rescoring
algorithm on the task of conversational telephone speech-to-
text transcription using the 309-hour Switchboard- I Release
2 training set [10] together with the Mississippi State tran-
scripts2 and the 30K-word lexicon released with those tran-
scripts. The lexicon contains pronunciations for all words and
word fragments in the training data. In this first attempt to ex-
tend lattice rescoring to spontaneous speech, the primary test
set adopted is the 1831-segment SWB part of the NIST 2000
Hub5. That is, the Callhome subset of the NIST 2000 Hub5
task is excluded. This allows us to have ASR baseline systems
comparable with those reported in [6].

4.2. Acoustic Features

The Kaldi toolkit [26] is used to generate the acoustic fea-
tures needed to train the acoustic models (both GMM/HMM
and DNN/HMM) of the ASR baseline systems, and the at-
tribute detectors. The 40-dimensional acoustic vector is gen-
erated as follows: 13-dimensional Mel-frequency cepstral co-
efficient [27] features are spliced in time taking a context size
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of 9 frames (i.e., 4), followed by de-correlation and dimen-
sionality reduction to 40 using linear discriminant analysis.
maximum likelihood linear transform is used to further de-
correlate the acoustic features. This is followed by speaker
normalization using fMLLR. The fMLLR has 40× 41 param-
eters and is estimated using the GMM-based system applying
speaker adaptive training.

4.3. Baseline Systems

Three independent LVCSR baseline systems were built:

ML GMM/HMM: The HTK [28] toolkit was used to design
this baseline GMM/HMM system trained on the acoustic
features described above. The models trained on the full
training data 40 mixture components per observation state.
The GMM/HMM models were trained with maximum like-
lihood (ML). Using more than 40 Gaussians did not improve
the ML result.

BMMI GMM/HMM: The KALDI recipe was used to design
this baseline GMM/HMM system trained on the acoustic fea-
tures described above. The models trained on the full training
data contain 5230 tied triphone states and 300K Gaussians.
These models were trained using boosted maximum mutual
information (BMMI) [11] with a 0.1 boosting factor.

DNN/HMM: The KALDI toolkit was used to design this
baseline DNN/HMM system trained on the acoustic features
described above. These features are globally normalized to
have zero mean and unit variance. The DNN trained on the
full training data has 6 hidden layers, where each hidden layer
has 2048 neurons. The output layer has 8857 output units cor-
responding to senone classes. The input to the network is an
11 frame (5 frames on each side of the current frame) context
window of the 40 dimensional features. A greedy layer-wise
pre-training [29] is performed to initialize each hidden layer.
The interested reader is referred to [30] for additional details
on the design and training of the KALDI DNN.

4.4. Attribute Detectors and Evidence Merger

Each attribute detector was independently trained on the
acoustic features described above, except a global normaliza-
tion transformation was applied to them in order to have to
zero mean and unit variance. A development set was created
by using 10% of the Switchboard-I Release 2 data, and it was
used for stopping the training phase. The remaining 90% of
the data were used for the training phase. The actual input
to each attribute detector is constructed using 2n + 1 frames
of speech features, and n is the number of look-forward and
look-backward frames. In the following experiments, n was
set to 4. The neural architecture evaluated in the work is: a
deep MLP with four (4) hidden layer having 1500 neurons

with sigmoidal activation function with no pre-training. The
softmax function is used in order to obtain attribute poste-
rior probabilities. Each attribute detector classifies an input
speech frame into one of the following classes: target class,
non-target class, voiced noise, noise, laugh, silence. In our
previous studies [23], each detector classified the input frame
into only two classes: target, and non-target. Yet, SWB data
contain non-speech events (such as noise, and laugh) that may
harm the detector performance if assigned to the non-target
class. In order to be consistent with the ASAT terminology
[21], we decided to use the term attribute detectors to refer to
these attribute classifiers.

The merger is implemented using an MLP, and it com-
bines the evidence generated at output of each attribute
detectors and generates class posterior probabilities. The
actual input to the merger is constructed using the present
frame along with four look-forward and four look-backward
frames. Hence, the input dimension is 1080. Different neu-
ral configurations have been evaluated: 1) MLP with single
hidden layer having 1500 nodes, and 46 phone-based output
classes (s−Merger), 2) deep MLP with five hidden layers
having each 2048 nodes, and 46 phone-based output classes
(d−Merger). In the deep configuration, senone classes were
also used. That resulted in a deep MLP configuration with
8957 output classes. In all cases, the softmax function is
used as output non-linearity. In the deep MLP configuration
(d−Merger−sen). In this work, the possible advantages of
pre-training was not investigated.

5. RESULTS

5.1. Results on Attribute and Phone Classification

Table 1 shows the classification accuracies at a frame level
for the speech attributes used in this work. From this table we
observe that high attribute accuracies can be delivered using
a deep MLP trained over short-time spectral features. Fur-
thermore, for some attributes, such as nasal, and retroflex the
classification accuracy is over 90%. In general, the attribute
classification accuracy is in the range between 80-90%. The
lowest accuracy is observed for the tense class. It is also inter-
esting to notice that the classification accuracy is only 93.7%
which is much lower than that attained using high-quality read
speech [21].

Table 2 summarizes the classification accuracies at the
frame level for phoneme and senone classes. We observe a
1% absolute improvement going from shallow to deep MLPs
although pre-training was not applied to initialize the deep
network architecture. The latter makes us believe that fur-
ther improvement can be attained by applying a layer-wise
pre-training of the neuron parameters. In the last column, the
senone-based deep MLP accuracies is reported. It is the first
time we use senones at the output of the merger, and the frame
classification accuracy attained is equal to 51%.
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Table 1. Classification accuracies (in %) at a frame level
on the development set for the speech attributes used in this
work.

Attribute Frame Accuracy
anterior 82.8

approximant 89.1
back 82.4

continuant 84.3
coronal 83.9
dental 92.4

fricative 88.2
glottal 93.5
high 86.2
labial 89.3
low 88.5
mid 85.2
nasal 90.3

retroflex 92.0
stop 87.2
tense 79.9
velar 91.7

voiced 86.8
vowel 81.4
silence 93.7

Table 2. Merger Accuracy Results (in %) on the Development
Data.

setup s−MLP d−MLP d−MLP−sen

Accuracy 69.0% 71.2% 51.1%

5.2. Lattice Rescoring Results

Table 3 shows system performance for the three ASR sys-
tems evaluated in this work along with the lattice rescoring
accuracies in terms of word error rate (WER). The perfor-
mance of the three ASR baseline systems shown in the first
row of Table 3 are comparable with those reported in [6] on
the Switchboard part of the Hub5 2000 data with similar ar-
chitecture solutions. Hence lattice rescoring is applied to top
ASR systems for the task at hand. We first discuss the results
using a standard GMM/HMM baseline system, and we there-
fore focus on the first two columns of Table 3. When a shal-
low MLP (s−Merger) is used to implement the merger (sec-
ond row of the table), the rescored systems always achieves
better performance than the conventional baseline system due
to the system combination effect. In particular, the WER
is reduced from the initial 24.2% down to 22.8% when the
ML GMM/HMM baseline system is used. The same rescor-
ing procedure carried out over the BMMI GMM/HMM sys-
tem produces a final WER of 19.2% starting form the initial
19.5%. A bigger improvement is observed when the shallow
merger is replaced by a deep merger (d−Merger), as shown in
the third row of the table. A final WER of 21.8% is attained
by rescoring lattices generated with ML GMM/HMM system,
and a WER of 18.6% is instead observed rescoring over lat-
tices generated with the BMMI GMM/HMM baseline system.

Table 3. Lattice Rescoring Results in terms of WER (in %).
setup ML BMMI DNN

Baseline 24.2 19.5 15.7

s−Merger 22.8 19.2 no-improv.
d−Merger 21.8 18.6 no-improv.

d−Merger−sen – – 15.5

It should be pointed out that if we were to use the output of
the merger as state probability density function of a conven-
tional hybrid ANN/HMM system, the WER would be equal
to 24.9% and 28.8% for the s−Merger, and the d−Merger
case, respectively. These WERs are worse than the results at-
tained through lattice rescoring; therefore, beneficial comple-
mentary information has been injected into the baseline sys-
tems.

DNNs have boosted ASR system performance, as above-
mentioned, and revitalized the “hybrid” frame-work. Hence,
porting our ASAT rescoring technique within this ASR ar-
chitecture is an important step of our studies. The last col-
umn of Table 3 shows results related to DNN/HMM baseline
system. No improvement is observed when using phoneme
classes at the output of the MLP-based merger. The WER is
reduced from 15.7% to 15.5% instead if a deep merger with
context-dependent phone classes is employed in the rescoring
phase. Although the small improvement, we believe it is quite
promising for several reasons: 1) attributed detectors can be
improved using attribute-specific acoustic features, 2) the at-
tribute detectors can be improved using context-dependent at-
tributes and pre-training, and 3) attribute-based approaches
provide a more flexible framework than DNN/HMM baseline
systems for capturing pronunciation details, and 4) a more so-
phisticated rescoring scheme can be developed.

6. SUMMARY

We have presented our first attempt at poring the ASAT lattice
rescoring technique to spontaneous speech. Several ASAT
frontend configurations were developed and evaluated, and
it was demonstrated that our rescoring technique reduced
the WER of standard GMM/HMM systems built employing
state-of-the-art techniques, such as speaker adaptive training,
and discriminative training. In particular, the WER was re-
duced from 24.2% down to 21.8% when the acoustic model
is trained using maximum likelihood estimation, and the
ASAT merger is a deep MLP with no pre-training. Further,
the WER is reduced to 18.6% by rescoring lattices gener-
ated with a BMMI GMM/HMM system trained over fMLLR
acoustic features. A first attempt at rescoring lattices gener-
ated with a DNN/HMM system was also carried out, and a
small improvement was observed. In future work, more so-
phisticated rescoring combination technique will be devised,
and MLP pre-training will be investigated.
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