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ABSTRACT

Discriminative models, like support vector machines (SVMs),
have been successfully applied to speech recognition and im-
proved performance. A Bayesian non-parametric version of
the SVM, the infinite SVM, improves on the SVM by allow-
ing more flexible decision boundaries. However, like SVMs,
infinite SVMs model each class separately, which restricts
them to classifying one word at a time. A generalisation of the
SVM is the structured SVM, whose classes can be sequences
of words that share parameters. This paper studies a combina-
tion of Bayesian non-parametrics and structured models. One
specific instance called infinite structured SVM is discussed
in detail, which brings the advantages of the infinite SVM to
continuous speech recognition.

Index Terms— Bayesian non-parametrics, Dirichlet pro-
cess, mixture of experts, infinite structured SVM

1. INTRODUCTION

Discriminative models, like support vector machines (SVMs),
have been successfully applied to speech recognition. By in-
troducing features in a generative feature space [1] extracted
using HMMs, state-of-art speaker adaptation and noise ro-
bustness techniques [2] can be used to generate the features.

An SVM by itself uses a linear decision boundary, which
may be inappropriate for the feature space. The standard ap-
proach is to apply a kernel function. An alternative that does
not require choosing a kernel is to use a mixture-of-experts
model [3, 4], which employs different classifiers for different
regions of space. Normally the optimal number of experts is
unknown. In order to sidestep the problem of setting the num-
ber of experts, a Bayesian non-parametric framework can be
used. By using the infinite SVM (iSVM) [5, 6], better per-
formance is achieved compared with using the SVM, because
the iSVM allows SVMs to focus on regions of feature space.
Since the interpolation weights for the SVM outputs depends
on the location of the data in the feature space, the ensemble
decision effectively uses a non-linear decision boundary.
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The SVM and iSVM are unstructured models in that they
model each class separately. They have therefore been ap-
plied to digit recognition in an acoustic code-breaking [7] set-
ting: first continuous speech is segmented into segments, and
then each segment from an HMM recognition pass is rescored
independently [6]. In continuous speech recognition (CSR),
however, each class is a sentence, and the number of possi-
ble classes is unlimited. For example, the possible number of
classes for a 6-digit length utterance is 106. However, these
classes have structure: they share words or phones. The struc-
tured SVM (SSVM) [8] was introduced to classify data with
structured labels. In [9], the SSVM was successfully used in
medium to large vocabulary CSR tasks. In order to apply the
mixture-of-experts framework to large vocabulary CSR, the
structure must be incorporated into the model.

This paper discusses Bayesian non-parametrics for struc-
tured SVMs and introduces the infinite structured SVM
(iSSVM) in particular. Rather than using a kernel func-
tion in the SSVM [10], which requires a kernel to be chosen,
the iSSVM deploys multiple SSVMs to yield a non-linear
boundary. The generative feature space already implies a
sequence kernel [1]. Though an additional kernel could be
used by each expert in the iSSVM, the kernel trick is not
considered here.

This paper is organised as follows. The mixture of experts
and its infinite version are discussed in Section 2. The SSVM
is detailed in Section 3, and the iSSVM is introduced in Sec-
tion 4. Classification and corresponding issues are discussed
in Section 5. Finally, the experimental results and conclusions
are given in Section 6.

2. MIXTURE OF EXPERTS
The mixture of experts combines the posteriors from multi-
ple experts focusing on different regions of the feature space,
producing a model that can perform more complicated clas-
sifications than a single expert can. The framework of the
mixture of experts with M experts is illustrated in Fig. 1. The
gating network, e.g. a GMM with parameters Θ, uses the
input to determine the mixture weights P (z = m|x,Θ) for
each expert m. z is a random variable, the indicator variable,
which denotes which expert the input x is associated with.
The overall class posteriors are computed with

P (w|x,Θ, H) =
∑
z∈Z

P (z|x,Θ)P (w|x,ηz) (1)
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Fig. 1. The framework of the mixture-of-experts model

where Z is the indicator set: Z = {1, . . . ,M}. The second
term P (w|x,ηz) is the zth expert with parameter ηz . H is
the parameter set for all the experts, and w is the class label.

If the number of experts in the mixture of expert is set
to infinity, M → ∞, and the gating network is given by a
Dirichlet process (DP) mixture model [11, 12], the DP mix-
ture of experts [6] can be derived. It has the same form as
equation (1), but the indicator set Z has infinite size: Z =
{1, 2, . . . ,∞}. Section 4 discusses a Monte Carlo method to
deal with this.

3. STRUCTURED SVM

The structured SVM can be considered as a log-linear model
with large-margin training [9]. The log-linear model gives
the distribution of word sequenceW and the segmentation ρ
given the utterance O:

P (W, ρ|O,λ,η) =
exp

(
ηTΦ(O,W;λ, ρ)

)∑
W′,ρ′ exp

(
ηTΦ(O,W ′;λ, ρ′)

) (2)

where λ indicates the parameters of the generative model,
and η those of the log-linear model. Given ρ, which is a
segmentation into words, the utterance and word sequence
can be further described as O = {O1, . . . ,OIρ} and W =
{w1, . . . , wIρ}, where Oi is a segment of audio, wi is the
corresponding word of the segment, and Iρ is the number of
segments. Φ(O,W;λ, ρ) is the joint feature space, which can
be set to a sum over segments [13]:

Φ(O,W;λ, ρ) =
1

T


∑Iρ
i=1 δ(wi, w̃1)ϕ(Oi;λ)

...∑Iρ
i=1 δ(wi, w̃L)ϕ(Oi;λ)

log
(
P (W)

)
 (3)

where {w̃1, . . . , w̃L} are all the unique words, P (W) is given
by language model, T is the number of frames in utteranceO,
which is utilised to normalise the feature space corresponding
the utterances with various lengths, and ϕ(Oi;λ) is the log-
likelihood feature vector, which can be described as follows:

ϕ(Oi;λ) =

 log
(
p(Oi|λw̃1)

)
...

log
(
p(Oi|λw̃L

)
)

L×1

(4)

In equation (4), p(Oi|λw̃l) is the likelihood of the HMM cor-
responding to label w̃l given the segmentOi.

For large-margin training of the log-linear model, the mar-
gin is defined as the log-posterior ratio between the reference
Wn and the most competing hypothesis W . There are N
training instances. By introducing the prior P (η), the training
criterion to be minimised can be described as:
N∑
n=1

[
max

W,ρ 6=Wn,ρn

{
L(W,Wn)− log

(P (Wn, ρn|On,η,λ)

P (W, ρ|On,η,λ)

)}]
+

− logP (η) (5)

where L(W,Wn) is the loss between the hypothesis W and
the referenceWn. The set of possibleW and ρ are obtained
from a lattice. When the prior P (η) is given a Gaussian dis-
tribution P (η) = N (η;µη,Ση) with mean µη and scaled
identity covariance matrix Ση = CI , and substituting equa-
tion (2) into equation (5), the large-margin training criterion
can be further described as follows [9]:

1

2
||η − µη||2 + C

N∑
n=1

[
max

W,ρ 6=Wn,ρn

{
ηTΦ(On,W;λ, ρ)

+ L(W,Wn)
}
− ηTΦ(On,Wn;λ, ρn)

]
+

(6)

4. INFINITE STRUCTURED SVM

The Dirichlet process mixture of experts is given in equa-
tion (1) with infinite-sized indicator set Z. In order to apply
this type of model to continuous speech recognition, struc-
ture needs to be incorporated in the model. The direct way
to do this is to incorporate the structure into the experts. If
each expert is an SSVM described in equation (2), then the
DP mixture of experts given in equation (1) becomes:

P (W, ρ|O,λ,Θ,H) =
∑
z∈Z

P (z|O,λ,Θ)P (W, ρ|O,λ,ηz)
(7)

Here, the indicator variable z corresponds to the whole ut-
terance O, and the utterance indicator z is a scalar. The re-
sulting model consists of infinite number of SSVMs, and is
called the infinite structured SVM (iSSVM). An alternative is
to model each word as a mixture of SVMs. The utterance in-
dicator z then becomes a vector, and the resulting model can
be called a structured infinite SVM (SiSVM). However, this
paper focuses on the infinite structured SVM, as given in (7)
with scalar indicator z.

Suppose the training data areD = {O1, . . . ,ON ;W1, . . . ,
WN ; ρ1, . . . , ρN}, then classification of the iSSVM can be
described as follows:

P (W, ρ|O,λ,D) =

∫
P (W, ρ|O,λ,A)p(A|D)dA (8)

where A = {Θ, H} are all the parameters of the iSSVM.
Since the integral in equation (8) is intractable to compute, a
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Monte Carlo method can be applied to approximate this inte-
gral. Classification can then be described as:

P (W,ρ|O,λ,D) ≈ 1

K

K∑
k=1

P (W, ρ|O,λ,A(k)) (9)

=
1

K

K∑
k=1

Mk∑
m=1

P (z = m|O,λ,Θ(k))P (W, ρ|O,λ,η(k)
m )

where A(k) are sampled from the model posterior distribu-
tion p(A|D). Here, K samples are used to approximate this
intractable integral. SinceA is the whole parameter set of the
iSSVM, the joint posterior distribution p(A|D) does not have
a closed form. Thus, Gibbs sampling [14] is used to obtain
samples from this joint posterior distribution. In sampling,
the auxiliary variables z = {z1, . . . , zN} (which are the in-
dicator variables for the training data) are introduced. The
samples A(k) are obtained by sampling from p(A, z|λ,D),
yielding {A(k), z(k)}. A(k) can be considered as being sam-
pled from p(A|λ,D) [15]. Mk is the number of unique values
of the sampled indicators z(k).

Θ is the parameter set of the gating network which here
is a DP mixture model. The conditional posterior distribution
of the parameter set can be described as follows:

p(Θ|H(k), z(k),λ,D) = p(Θ|{φ(On;λ)}Nn=1, z
(k)) (10)

where φ(On,λ) is the feature space for the utterance On,
which maps the observation On to a space with fixed dimen-
sion. The feature is the log-likelihood feature of the whole
utterance. Here, the normalised features based on segments
are used: φ(On,λ) = (1/Tn)

∑
i ϕ(Oi,λ), where Tn is

number of frames in utterance On, and ϕ(Oi,λ) is the log-
likelihood feature described in equation (4). Given the fea-
tures {φ(On;λ)}Nn=1 and corresponding indicators z(k), Θ(k)

can be sampled through the methods described in [11, 12].
In terms of the parameters of the experts H , each expert

is a log-linear model with large margin training, so the pa-
rameter of the mth expert ηm is obtained through equation
(6) with the data associated with expert m. If there are few
observations associated with an expert, generalisation can be-
come a problem. Thus, each expert uses an informative prior.
Similar to the method used in [6], the mean of the prior µη

is obtained from the SSVM trained on the whole training set.
By introducing this mean, the iSSVM should recover the per-
formance of the SSVM, if C is small enough (i.e. if the vari-
ance is small enough). Better performance could be achieved
by gradually increasing C. The 1-slack cutting plane algo-
rithm [16] is used to train the SSVM. The constraint set that
this algorithm uses for training the current SSVM parameter
η
(k)
m can be cached and propagate to the next iteration of ob-

taining η(k+1)
m . This caching method can make the training

more efficient, especially when applying the iSSVM to large
vocabulary CSR.

The indicator variable zn is sampled according to the fol-
lowing posterior distribution:

P (zn = m|A(k), z−n,λ,D) ∝ (11)

P (zn = m|z−n, α)p
(
φ(On,λ)|θ(k)m

)
P (Wn, ρn|On,λ,η(k)

m )

where z−n denotes all the indicators except zn. The first
term P (zn = m|z−n, α) is given by the Chinese Restau-
rant Process (CRP) with concentration parameter α [17].
The term P (Wn, ρn|On,λ,η(k)

m ) is the posterior distribution
given by the log-linear model described in equation (2), and
term p

(
φ(On,λ)|θ(k)m

)
is the component likelihood. When zi

indicates an existing expert, it is straightforward to calculate
the conditional posterior distribution of zn. When zn denotes
a new expert, following the method introduced in [11], in
calculating the likelihood p

(
φ(On,λ)|θ

)
, the parameter θ is

sampled from its prior distribution as an auxiliary parameter,
then the likelihood can be easily obtained. In order to make
the newly generated expert have good generalisation, in cal-
culating the third term, the parameter for the expert η is given
as the the mean of its prior, namely the optimised parameter
of the SSVM trained on the whole training set.

5. CLASSIFICATION

The equation used for classification has been given in equa-
tion (9). By substituting the log-linear model given in equa-
tion (2) into (9), it becomes:

P (W, ρ|O,λ,D) (12)

≈ 1

K

K∑
k=1

Mk∑
m=1

P (zk = m|O,λ,Θ(k))
exp

(
η
(k)T
m Φ(O,W;λ, ρ)

)
Skm

where all possible (W, ρ) are obtained from a lattice, and Skm
is the normalisation term:

Skm =
∑
W′,ρ′

exp
(
η(k)T
m Φ(O,W ′;λ, ρ′)

)
(13)

In the SSVM, this term can be ignored, since no posterior
needs to be calculated and the normalisation term stays the
same for all possible labels. For the iSVM on the other hand,
the posterior, given by the log-linear model, does need to be
calculated. Thus, this term cannot be ignored, but it is trivial
to calculate, since the possible number of labels are small for
each segment. In the iSSVM, the calculation of this term Skm
is nontrivial, since the possible number of labels are exponen-
tially large for the utterance O.

Given that the possible number of labels are extremely
large, the summation in equation (13) is quite inefficient.
The forward algorithm can be adopted to calculate this sum-
mation efficiently on the lattice. According to the defini-
tion of the joint feature space given in equation (3), and
describing the parameter of the mth SSVM as η(k)

m =
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System Features
Test Set WER(%)

Avg
testa testb testc

HMM MFCC 9.83 9.11 9.53 9.48
SVM

Log-Like
8.29 7.90 8.61 8.20

iSVM 8.25 7.87 8.53 8.15
SSVM

Joint Feat
7.78 7.29 7.98 7.63

iSSVM 7.60 7.25 7.77 7.49

Table 1. The results on Aurora 2 database

{η(k)T
m,w̃1

, . . . ,η
(k)T
m,w̃L

, η
(k)
m,W}T, the dot product can be per-

formed for each arc instead of for the whole utterance, so that
the normalisation term in equation (13) becomes:

Skm =
∑
W′,ρ′

exp
( 1

T

[ Iρ′∑
i=1

η(k)T
m,wi

ϕ(Oi;λ) + η(k)
m,W logP (W)

])

=
∑
W′,ρ′

[
P (W)

η(k)
m,W
T

Iρ′∏
i=1

exp
( 1

T
η(k)T
m,wi

ϕ(Oi;λ)
)]

(14)

Again, T is the number of frames in utterance O, and Iρ′ is
the number of segments given the segmentation ρ′, which is
one path in the lattice. P (W) is the probability of the word
sequence. If the bigram language model is used, the probabil-
ity can be described as P (W) =

∏Iρ′
i=1 P (wi|wi−1), and here

P (w1|w0) is defined as P (w1|w0) = P (w1). Then, equation
(14) can be further described as follows:

Skm =
∑
W′,ρ′

{Iρ′∏
i=1

[
P (wi|wi−1)

η(k)
m,W
T exp

( 1

T
η(k)T
m,wi

ϕ(Oi;λ)
)]}
(15)

Because the term inside the product is now a scalar, the for-
ward algorithm can be applied to calculate this summation on
the lattice. The forward algorithm is discussed in [18]. At
each node in the lattice, the scores are merged. Thus, Skm can
be calculated in O(NarcL) time, where Narc is number of arcs
in the lattice, and L is the unique number of segment labels.

In classification, the best hypothesis (W, ρ) needs to be
found through equation (12). But, finding a path ρ and corre-
spondingW , that maximises the posterior P (W, ρ|O,λ,D),
might be a problem here. In the structured SVM, the Viterbi
algorithm is applied to search the best hypothesis (W, ρ) [9].
However, in the iSSVM, the parameter η(k)

m varies with ex-
perts m and samples k. Only when m and k are given can
the Viterbi algorithm be applied. Here, however, the summa-
tion over m and k in equation (12) makes it impossible to
use the Viterbi algorithm. Instead of enumerating all possible
(W, ρ), this exponentially large set is approximated. The can-
didate set P is constructed with the N best hypotheses1 from
each expert separately, which it is possible to find using the
Viterbi algorithm. After the set P is obtained, equation (12)
can be used in classification as follows:

(W, ρ) ≈ arg max
W,ρ∈P

P (W, ρ|O,λ,D) (16)

1Here, only the 1-best hypothesis is considered.
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Fig. 2. The iSSVM performance on set A with different C

6. EXPERIMENTS AND CONCLUSIONS

The performance of the proposed iSSVM is evaluated on the
Aurora 2 database [19]. The utterances in this database are
continuous digit strings with vocabulary size 12 (one to nine,
plus zero, oh and silence). The generative models (HMMs)
are trained on the clean data with 8840 utterances. The noise
model for VTS compensation [20] is estimated on each ut-
terance, and the performance of the VTS compensated HMM
(which is used to obtain log-likelihood features for the dis-
criminative models in the experiments) is listed in Table 1.
The SVM, iSVM, SSVM and iSSVM are trained on a subset
of the multi-style training data containing 3 noise conditions
(N2, N3 and N4) and 3 SNRs (20dB, 15dB and 10dB). All 3
test databases, A, B and C with numbers of utterances 20020,
20020 and 10010 respectively, are used in the evaluation.

In the experiments, the log-likelihood features described
in equation (4) are used by the SVM and iSVM, and the joint
features described in equation (3) are used by the SSVM and
iSSVM. All experiments are conducted with the number of
samples K = 10. The results are listed in Table 1. On test
set A and C, the iSSVM get around 3% relative improvement
in all SNRs, but only a small improvement is achieved on test
set B. The large margin training criterion described in equa-
tion (6) is adopted to train the experts (SSVM) of the iSSVM,
and different experts share the same C. The parameter C is
tuned on test set A, with word error rates illustrated in Fig. 2.
Since the prior mean µη in equation (6) is given the opti-
mised parameter of the SSVM trained on the whole training
set, when C is small, the SSVM performance is recovered,
and the optimised C can be found by increasing C.

This paper studies the combination of Bayesian non-
parametrics with structured models. Specifically, the infinite
structured SVM is detailed, which is an extension of the
iSVM described in previous paper [6]. Taking advantage of
the infinite mixture of experts that are structured models, the
iSSVM outperforms the iSVM and SSVM. As discussed in
Section 4, the indicator variable of the iSSVM is a scalar,
which means all the segments in an utterance share the same
indicator. This might limit the flexibility of the gating net-
work. In order to make better use of the data, a more granular
(vector) indicator could be introduced. Thus, future work will
study a structured model with a mixture of experts for each
word, the structured infinite SVM (SiSVM).
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