
CHASING THE METRIC:
SMOOTHING LEARNING ALGORITHMS FOR KEYWORD DETECTION

Oriol Vinyals1,2, Steven Wegmann2

1University of California, Berkeley, 2International Computer Science Institute

ABSTRACT

In this paper we propose to directly optimize a discrete objective
function by smoothing it, showing it is both effective at enhancing
the figure of merit that we are interested in while keeping the over-
all complexity of the training procedure unaltered. We looked at the
task of keyword detection with data scarcity (e.g., for languages for
which we do not have enough data), and found it useful to optimize
the Actual Term Weighted Value (ATWV) directly. In particular, we
were able to automatically set the detection threshold while improv-
ing ATWV by more than 1% using a computationally cheap method
based on a smoothed ATWV on both single systems and for system
combination. Furthermore, we did study additional features to re-
fine keyword candidates which were easy to optimize thanks to the
same techniques, and improved ATWV by an additional 1%. The
advantage of our method with respect to others is that, since we can
use continuous optimization techniques, it does not impose a limit in
the number of parameters that other discrete optimization techniques
exhibit.

Index Terms— Keyword Detection, Optimization, Discrete
Metrics

1. INTRODUCTION

Keyword detection is the task of deciding whether a certain word
appears in an audio segment. It can be seen as a subproblem of
speech recognition, and this is what motivated the approach that ICSI
took on the IARPA Babel program [1]. The goal of the program “is
to rapidly develop speech recognition capability for keyword search
in a previously unstudied language, working with speech recorded in
a variety of conditions with limited amounts of transcription.” This
paradigm contrasts with other keyword detection approaches where
the number of keywords to detect is limited, and the data is not scarce
(e.g., to activate a device with a specific keyword in a commercial
system).

Although in a detection task one typically cares about the preci-
sion and recall of the detector, since in Babel we are given a long list
of keywords with very different characteristics (e.g., common words
and extremely rare words), averaging across each keyword does not
seem to be the optimal metric. Instead, they define the Actual Term
Weighted Value (ATWV), which is a weighted average (with key-
word specific weights based on how frequent the keyword is in the
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test bed) of a metric related to probability of misses and false alarms.
In particular, for a posting entry i with keyword k, TWV(k,i) is:

TWV(k, i) =

I(s(i) > th(k))

(
1

Nk
I(i = hit)− β

T −Nk
I(i = FA)

)
where I(.) is the step function, s(i) is the score for the i-th entry,
th(k) is the keyword specific threshold for keyword k, β = 999.9,
T is the total evaluation time in seconds, and Nk counts how many
times keyword k occurs in the current dataset. This metric basically
counts the posting entry only if the score is above a certain (keyword
specific) threshold. If the posting entry i was a hit, it gives a reward
(which is larger for rare keywords), and if it was a false alarm it has a
cost (that is approximately constant since T is typically much larger
than Nk). ATWV is then simply:

ATWV =
1

|K|
∑
k

∑
ik

TWV(k, ik) (1)

where ik goes through every index in the posting list that contains
keyword k as a candidate, and |K| is the total number of keywords.
Note that ATWV is upper bounded by 1.

In this paper, we propose to smooth ATWV based on recent work
[2] which suggests that direct optimization of a smoothed discrete
figure of merit (such as ATWV) is a cost effective method to achieve
close to optimal solutions.

2. THE ICSI SYSTEM AND BABEL

The ICSI system can be split into two major subsystems: standard
speech recognition, and the keyword search system. We describe
them in the following two sections:

2.1. The recognition system

The Kaldi speech recognition toolkit [3], along with the TNet1

toolkit, were used for recognition and lattice generation.
The full system description can be found in [4], and an updated

version in [5], but here we summarize it for completeness.
The ICSI system uses 13 MFCCs as primary features after cep-

stral mean subtraction. We extract pitch and probability-of-voicing
(PoV) features using a sub-band autocorrelation classification, SAcC
[6]. These two features are smoothed, interpolated, and then pasted
with the cepstral features to form a 15-dimensional feature vector.
While ICSI uses ∆ and ∆∆s for early systems in the initialization,
we use a variant of HLDA features for the final systems. The LDA
transformation takes as input a context of 7 spliced static MFCC
vectors and is trained using the context dependent states as targets;

1http://speech.fit.vutbr.cz/software/neural-network-trainer-tnet
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the features are projected down to 30 dimensions. During training,
this LDA matrix is composed with global MLLT matrices as well as
speaker dependent fMLLR matrices [7].

We also use 30-dimensional tandem bottleneck (BN) features
[8] that are obtained using a hierarchical NN [9]. See [4] for more
details. For the tandem features, the system pastes combinations of
cepstral, pitch and bottleneck features together to form the tandem
feature vector. Note that HLDA is applied to the cepstral part of the
features only, while MLLT and fMLLR are applied to the combined
feature stream.

Following this is an HMM system with a standard continuous
acoustic model where the emission probabilities of the context de-
pendent states are derived from subspace Gaussian mixture models
(SGMM) [10]. We use a 3-gram language model on the training tran-
scripts, and apply Kneser-Ney smoothing and interpolated counts
[11, 12].

2.2. The KWS system

The KWS system consists of three steps: i) converting recognition
lattices to indexes, ii) searching the indexes for a given KW and
constructing a posting list, iii) and setting the KW-specific detec-
tion threshold in order to optimize ATWV. These are further de-
scribed below. Note that the KWS systems described here are en-
tirely word-based, i.e., the ICSI system does not combine the word-
based search with a separate subword-based search in order to handle
out-of-vocabulary (OOV) KWs, e.g., as in [13, 14].

i. ICSI uses “lattice-tool” from SRILM [11] to convert lattices
to word-level indexes. We set the lattice-tool parameter that controls
how far apart in time two occurrences of a word have to be in the
lattice before we consider them separate entries in the index to be
0.1 sec.

ii. For single word KWs the posting list is simply all of the oc-
currences of the KW sorted by their posterior probabilities. To con-
struct the posting list for a multi-word KW ICSI follows [13]: the
individual words are first retrieved from the index in the correct or-
der with respect to their start and end times, but occurrences are dis-
carded when the time gap between adjacent words is more than 0.5
seconds. The surviving occurrences are assigned a detection proba-
bility equal to the minimum of the individual word probabilities.

iii. To determine the detection threshold for a given KW we used
an empirical threshold to approximately maximize TWV for each
keyword. However, much of our system and improvements produce
a threshold-less system, so this step is omitted in the experiments
reported in Section 3.2 and onwards. However, for the baselines in
the Standard Metrics section, this step is still performed as it pro-
duces much better thresholds than setting them to a fixed value for
all keywords.

2.3. The Data

The audio data in each language is conversational telephone speech
recorded in a variety of environments and handset types. There
were several languages that program participants worked with, and
in this paper we used Pashto (release IARPA-babel104b-v0.4bY),
Vietnamese (release IARPA-babel107b-v0.7), and Bengali (release
IARPA-babel103b-v0.3). Each language comes with about 80 hours
of transcribed training data (Full Language Pack), a pronunciation
lexicon that covers the words in the training data, and a 10 hour de-
velopment test set. All of the results in this paper report KWS results
using the keywords (KW) provided for the evaluation. Also, when

we report results on the evaluation data we will be restricting the re-
sults to the subsets, called “eval-part1”, where the ground truth was
released to participants: a 15 hour subset in the case of Vietnamese
and 5 hour subsets for the rest of the languages. We have also tested
our system on a new language released after the first year of Babel,
Bengali, to show that the approach generalizes.

3. DISCRIMINATIVE POSTING REFINEMENTS

Our contributions to the ICSI Babel system have been mostly about
modifying the posting lists by changing the score from each keyword
candidate, trying to achieve better overall performance. We have
considered several features (besides the posting entry) to enhance
the posterior estimate of the detected posting entry (i.e., keyword
and time segment pair). Here is an example of a very short posting
list:

CONV#14 house 1.3s-1.9s 0.56
CONV#15 house 6.3s-6.8s 0.12
CONV#15 castle 0.3s-1.2s 0.94

Note that each keyword candidate has a time, score (from lattice-
tool) and conversation id associated with it.

The features that we considered are:

• Acoustic Features: features inspired by the sparse coding fea-
tures presented in [15], by taking a window (centered around
the keyword candidate)

• Acoustic Quality Features: features such as signal to noise
ratio (SNR) extracted with SNREval2 and speaking rate [16]

• Keyword Specific Features: features such as the frequency or
length of a keyword

• Lattice Specific Features: since posting lists are derived from
lattices, we used arching measurements around the keyword
as an additional hint for confidence (the score output in step
ii. is already a good estimate)

• Neural Network Posterior Features: neural networks are used
to predict phone states per frame. We took the entropy around
the keyword of these posterior estimates as another proxy to
confidence

All the features above were computed, whenever possible, at the
posting list level (i.e., only on the span of the keyword candidate), at
the utterance level (i.e., on the span of the speech utterance given by
the speech/non-speech detector on the whole conversation side), and
at the global level (i.e., considering the whole conversation).

Initially, we attempted to learn standard classifiers using these
features. In particular, we considered both linear classifiers (logistic
regression and SVM), as well as non-linear classifiers (NN). We built
a simple dataset where, for each entry in the posting list, we assign
a corresponding label whether the entry was a hit (i.e., the keyword
was indeed in the ground truth), or not. This binary classification
task was very unbalanced since the posting lists were typically very
biased to produce a large number of false alarms. In the following
subsection we define some baselines and how standard classifiers
performed in this task.

2http://labrosa.ee.columbia.edu/projects/
snreval/
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Fig. 1. Receiver operating characteristic for Pashto on the training
data using ICSI system (baseline, in blue), our logistic regression
system (system, in red) and a neural network (nnet, in green).

3.1. Optimizing Standard Metrics

In Table 1 we show accuracy, likelihood, and ATWV for the training
data, which consists of about 400K posting entries for Pashto. The
baseline system uses as features the scores that are already present in
the posting lists (and that are used by the ICSI system) without any
additional features, and trains a simple logistic regression (with one
parameter and a bias). The rest used all the features available, but
SVM used hinge loss (optimizing accuracy), and Logistic Regres-
sion and Neural Network used cross entropy (optimizing likelihood).

Note that, in general, accuracy and likelihood are not great mea-
sures of ATWV (which we further discuss in the following sec-
tion), and ICSI and Baseline systems, even though they use the same
features, do not exhibit the same performance. This can be ex-
plained because the features get scaled by the logistic regression
model (Baseline) which has a negative effect on the following mod-
ule that sets the threshold for each keyword.

As another example of how different ATWV is with respect to
standard binary decision tasks, Figure 1 shows the Receiver Operat-
ing Characteristic (ROC) curve for the ICSI system (blue), the Lo-
gistic Regression (red) and the Neural Network (green). It is clear
that the green curve is better at any point of the precision / recall
curve, but in terms of ATWV both systems perform similarly. The
reason, which is also described in detail in a recent thesis from one of
the members of the ICSI team [17], is that rare keywords should be
regarded higher than common keywords (as they have higher TWV).
Instead of trying an ad-hoc method (such as biasing our dataset)
to achieve this, we chose to directly optimize ATWV, which is de-
scribed in the following section.

3.2. Optimizing ATWV

As previously discussed, instead of optimizing accuracy or likeli-
hood, we will optimize ATWV, which is the object of interest for
Babel. Even though we could use discrete optimization techniques
such as the Powell method [18] as used recently in [19], we pre-
fer smooth objective functions as these are faster to optimize, and
are not limited to linear models with few parameters. As a result,

Fig. 2. Smooth ATWV as the training progresses, as well as ATWV
on both training and testing for Pashto for the system with only the
score feature.

we can use more sophisticated regression models such as neural net-
works. Recall from equation 1 that ATWV is a discrete objective as
it is a function of thresholding our decision function for sample i,
s(i). Thus, we take the simple approach of smoothing the unit step
with the sigmoid function, so that:

I(x > 0) ≈ σ(Sx) =
1

1 + exp(−Sx)

which converges to the left hand side as S → ∞. Recent work
[2] suggests that optimizing a non-convex approximation of the dis-
crete function is almost always better than to find a convex relaxation
(such as replacing I(x > 0) with the hinge loss). In fact, the SVM
approach in the previous section (with some modifications) would be
close to doing such convex relaxation. But, since the dataset is quite
small (less than a million samples), we found the direct optimization
of a smooth version of ATWV more compelling. As a result, we
define from equation 1:

smoothATWV =
1

|K|
∑
k

∑
ik

σ(S(s(ik)− th(k)))

(
1

Nk
I(ik = hit)− β

T −Nk
I(ik = FA)

)
which now can be differentiated with respect to s(ik), and further to
the parameters with chain rule (assuming we parameterize s(ik;θ),
which will be referred to as the model). As a result, we define a
new objective function in which we can find the optimal parameters
θ that optimize ATWV (or, rather, an approximation to it). Lastly,
since the model typically has a bias which can partially absorb th(k),
and having a model that has a common threshold that is keyword
independent has certain advantages (e.g., for system combination),
we set th(k) = 0.5 ∀k. This also has the advantage of eliminating
step iii in Section 2.2.

With this approach, and setting S = 10, we ran L-BFGS on two
models: a log linear model, and a neural network. In both cases, the
input for the posting entry i are the features xi, and the parameters
of the model are θ, resulting in s(i;θ) = f(xi,θ) with f(.) being
either σ(.) (for the log linear model) or a neural network with one
binary output. Figure 2 shows the goodness of the approximation of
the smooth ATWV (blue vs. red curve), as well as showing that the
whole framework can indeed learn a better ATWV than the baseline
of 0.4010.

In Table 2 we show the results of our experiments. First, note
that our neural network, even though it fits the training data better

3327



System Features Accuracy Negated Log Likelihood ATWV
Majority Voting None 97.25% N/A 0.0

ICSI Score 97.31% N/A 0.4010
Baseline (Log. Reg.) Score 97.79% 0.08 0.3989

SVM +KW features +Acoustic features 98.21% 0.11 0.3976
Logistic Regression +KW features +Acoustic features 98.09% 0.07 0.4005

Neural Network +KW features +Acoustic features 97.98% 0.06 0.4012
Upper Bound Oracle 100.0% 0.0 0.71

Table 1. Several models and metrics measured on the Pashto training set.

System Features ATWV (train) ATWV (validation)
ICSI Score 0.4010 0.3685

Log Linear Model Score 0.4065 0.3752
Log Linear Model +KW features 0.4118 0.3799
Log Linear Model +KW features +Acoustic features 0.4138 0.3835
Neural Network +KW features +Acoustic features 0.4297 0.3764

Table 2. Several models and features when directly optimizing ATWV in the Pashto BABEL dataset.

than the simpler log linear model, overfits the data and the testing
ATWV is not competitive (even though it is better than the original
ICSI system). Secondly, even when considering only the features
used in the ICSI system (i.e. step ii of Section 2.2), the resulting
system is superior (0.3752 vs. 0.3685). This means that, even though
a lot of effort has been put trying to find the optimal threshold for the
score coming from the lattices, the automated system can do a better
job figuring out how to optimize ATWV directly.

As a last note, even when applying the Log Linear Model with
Score features trained on Pashto on a different language (Bengali),
the ATWV of the resulting system is also better. The Bengali ICSI
system has an ATWV of 0.3123, whereas transferring the model
from Pashto to Bengali yielded a slight improvement with an ATWV
of 0.3133. Also, when optimizing the model using Bengali, we were
expecting similar gains than with Pashto. Indeed, the ATWV with
all the features was of 0.3287, a significant improvement with very
little computational overhead. Lastly, we also performed an experi-
ment using the limited language pack (i.e., less training data), and on
Bengali we obtained an improvement from 0.1287 ATWV to 0.1476.

4. FURTHER IMPROVEMENTS OF ATWV

In this section, we describe current and future efforts that would fur-
ther improve ATWV. Since we found an efficient method to directly
optimize this metric, we explored how we could incorporate this in
other parts of the system. In fact, part of what we already were do-
ing was to optimize ATWV on single scalar values such as language
or acoustic modeling scales using a simplex method which did not
require to smooth the ATWV, and were already improving it by as
much as 10% relative.

4.1. System Combination using Optimized ATWV

Another idea we tried that seems to help in terms of ATWV is system
combination. Although it is out of the scope of this paper to review
system combination in the Babel project, the main idea is to replace
the human designed heuristic to combine systems by one that would
be learned with the procedure described in this paper. The way we
generate systems is by randomly selecting subsets of front-end fea-
tures, and by merging posting lists of such systems. If an entry of
system A overlaps with an entry of system B, the heuristic we found

System ATWV (validation)
ICSI A 0.3870
ICSI B 0.3697

A+B Heuristic 0.4446
A+B Our System 0.4534

Table 3. System combination on the Vietnamese development data
comparing human heuristics and our method to directly optimize
ATWV.

to work was to add the scores. Our method found the optimal way of
linearly combining scores of two (or more) systems with little com-
putational overhead (certainly none when comparing to training the
full system).

Results using Vietnamese can be found in Table 3. We use a
different language than in previous sections to further show general-
ization of our technique across languages. Indeed, even though we
tested several heuristics and converged to keeping the sum of two
scores when segments from different systems overlap, learning how
to linearly combine the systems (or, potentially, adding other features
such as the max of the scores) yielded an improvement of almost 1%
(the weights found by our system favored ICSI A, as that system had
better ATWV).

5. CONCLUSIONS

We conclude this paper by summarizing it. As it has been already
shown in the speech recognition community, optimizing errors that
are closely related to the figure of merit that we care about (e.g.,
WER in the case of ASR) is useful. Thus, when we develop a new
system with another metric that we care about, we generally should
directly optimize it since this typically outperforms optimizing other
related metrics that do not necessarily correlate well with our figure
of merit. In this paper we proposed an efficient method to change the
objective function aiming to optimize the smoothed figure of merit
(in the keyword detection Babel project, ATWV), at the cost of mak-
ing the objective function non-convex. We do not see this as a real
limitation since some of our models (e.g., deep architectures) are
already non-convex.
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