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ABSTRACT

In this paper, we explore methods for system combination of acous-
tic models having different features, modeling approaches and pho-
netic decision trees for speech recognition and keyword search. We
introduce a Graphic Processing Unit (GPU)-accelerated lattice gen-
eration method and show that this architecture is efficient and well
suited for multi-stream acoustic model combination. Additionally,
we introduce a novel method to combine acoustic models with dif-
ferent phonetic trees into a single fully composed HMM state level
(H-level) WFST network allowing lattice generation to be performed
using diverse acoustic models. We evaluate the performance of our
multi-stream approach to three standard techniques and observe that
multi-stream combination obtains higher speech recognition accu-
racy than Lattice Combination or ROVER (up to 5.5% relative im-
provement in speech recognition accuracy compared to the single
best model). Additionally, at an equivalent runtime, multi-stream
combination obtained a 15% higher Average Term Weighted Value
(ATWV) compared to CombMNZ for the keyword search task. By
combining phonetic decision tree, we obtained gain (WER reduc-
tion) from the diversity of phonetic decision tree by using more effi-
cient tree for each acoustic model.

Index Terms— Multi-stream acoustic model combination, Key-
word search, Weighted Finite State Transducer (WFST), Graphics
Processing Units (GPU), OpenKWS 2013

1. INTRODUCTION

System combination is often applied to improve the accuracy of au-
tomatic speech recognition (ASR) and related tasks such as keyword
search. By combining the output from multiple ASR systems, er-
rors generated by an individual system can be mitigated, improving
speech recognition accuracy. Common approaches for ASR sys-
tem combination include; Recognizer Output Voting Error Reduc-
tion (ROVER) [1], which combines the 1-best hypothesis from each
system, Confusion Network Combination (CNC) [2, 3] and Lattice
Combination [4] techniques, where sets of hypotheses are combined
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across multiple systems, and multi-stream combination [5], in which
acoustic model likelihoods are combined at the HMM-state level
during decoding. For tasks such as keyword search it has been ob-
served that rather than using one of the combination methods above,
performance can be improved further by independently performing
keyword search across different ASR systems and then combining
the keyword search output using standard approaches used in infor-
mation retrieval, such as CombMNZ [6] or WCombMNZ [7]. Us-
ing system combination we have observed improvements in speech
recognition accuracy of up to 11% relative and improvements in key-
word search performance, Actual Term Weighted Value (ATWV), of
up to 47% relative compared to our best single system for the Viet-
namese LimitedLP task in OpenKWS 2013.

Although system combination generally improves accuracy, it
comes at a high computational cost, as each additional model intro-
duced significantly increases the computation required. For a N-way
system combination the computation cost and runtime speed is ap-
proximately a factor of N larger than a single system. Additionally,
in order to obtain the good performance it is most effective to per-
form combination of models that have similar performance but are as
diverse as possible, models that use different features, different mod-
eling approaches, such as Gaussian Mixture Model (GMM) or Deep
Neural Network (DNN) acoustic models, or different phonetic deci-
sion trees generally obtain the best performance when combined.

While priors works have investigated numerous methods for
ASR system combination [1, 2, 3, 4, 5], there has been limited
investigation on what type of models to combine, and diversity
in which components of the speech recognition models (features,
acoustic modeling approach, or phonetic decision tree) obtain the
best combined performance. Additionally, priors works do not con-
sider the computation cost or runtime speed of such combination
methods. In this paper we investigate these two areas. We compare
the performance of different combination approaches and evaluate
the performance of combining models that differ by feature, acoustic
modeling technique and phonetic decision tree. In order to combine
acoustic models with different phonetic trees during multi-stream
speech recognition we introduce a novel method that composes a
single fully composed HMM state level (H-level) WFST network
using multiple phonetic trees. In this approach we generate a set of
virtual HMM-states, where each virtual state maps to a weighted set
of states per acoustic model, and using these virtual states to com-
pose a single H-level WFST network that is applied during decod-
ing. Additionally, we explore lattice generation on GPU-accelerated
platforms, and demonstrate that this architecture is well suited for
multi-stream speech recognition. By performing acoustic-model
likelihood computation on the GPU and lattice generation on the
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Fig. 1. Multi-stream acoustic model combination (wi is combination
weight for AMi.)

CPU we are able to accelerate lattice generation by approximately
3x, and we see little degradation even when additional acoustic
models are combined during decoding.

The rest of this paper is organized as follows. In Section 2, we
review techniques to combine acoustic models. Section 3 describes
the acoustic combination under WFST framework. Lattice genera-
tion on GPU-accelerated platform is presented in Section 4. Section
5 shows the experimental results. Finally, Section 6 concludes the
paper and discusses future work.

2. TECHNIQUES FOR ACOUSTIC MODEL
COMBINATION

In the speech to text (STT) task, system combination can be per-
formed at the feature level, model level or recognition outputs. In
STT task, the most popular method is the Recognizer Output Voting
Error Reduction (ROVER) technique [1], which combines the 1-best
results from multiple ASR systems into a composite word level net-
work, which derives a single recognition hypothesis using majority
voting. The two approaches of Confusion Network (CN) [2, 3] and
Lattice Combination[4], both of which rely on Bayes decision rule
to minimize word error rate (WER), were used to combine multiple
hypothesis from each ASR system.

For keyword search, also known as spoken term detection, sys-
tem combination is performed using CombMNZ[6] or WCombMNZ[7].
Although these techniques have been shown to improve ATWV, they
require keyword search results from multiple systems and thus the
computational cost increases linearly according to the number of
ASR systems to be combined.

In addition to combination using lattices or 1-best output from a
decoder it is also possible to combine acoustic model at the acoustic
likelihood score. This method is generally known as a multi-stream
acoustic model. When we combine acoustic score from individual
acoustic model, several averaging methods can be used, including
those listed below.

Arithmetic Mean Averaging:
log(pc(o|s

′

k)) = 1
N

∑N
i=1 wi log(pi(oi|si, j)) (1)

Geometric Mean Averaging:

log(pc(o|s
′

k)) =
N
√∏N

i=0 wi log(pi(oi|si, j)) (2)

Harmonic Mean Averaging:
log(pc(o|s

′

k)) = ( 1
N

∑N
i=0 wi log(pi(oi|si, j)−1))−1 (3)

where log(pc(o|s
′

k)) is the combined log-likelihood score of the fea-
ture o given state s

′

k in the combined decision tree, log(pi(o|si, j)) is
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Fig. 2. Phonetic tree combination example.

the log-likelihood score of the context dependent state si, j at model i
which is subject to map to state s

′

k in combined tree, wi is the weight
parameter to re-scale log likelihood value according to the acoustic
model and N is the number of acoustic models to be combined.

In the experimental evaluation we use Arithmetic mean as we
found it to significantly outperform both Geometric Mean and Har-
monic Mean for multi-stream combination.

3. ACOUSTIC MODEL COMBINATION UNDER WFST
FRAMEWORK

Weighted finite state transducers (WFST) offer a unified framework
for representing different knowledge sources and is well suited for
speech recognition. In speech recognition, the phonetic, lexical and
acoustic model can be composed together and optimized for speed
and size ahead of decoding [8]. This enables decoder to be simpler
and generally faster than dynamic decoders especially on the GPU-
accelerated platforms [9].

Applying multi-stream acoustic models is not obvious under
WFST frameworks. In order to take advantage of multiple acoustic
models, knowledge from phonetic decision trees are required during
search since each acoustic model could map a given context depend
phone to different HMM states. In the dynamic search decoder,
phonetic decision trees are available and can be used in order to find
corresponding HMM states for different acoustic models. In stan-
dard WFST composition procedure, however, allows only a single
phonetic decision tree per a HMM state level (H-level) WFST. In ad-
dition, mapping between context dependent phone to corresponding
HMM is composed and encoded in H-level WFST network and hard
to maintain during search. In the following section, we investigate
two possible techniques in order to applying multi-stream acoustic
models under WFST framework.

3.1. Combination with a common phonetic decision tree

One typical approach of applying multi-stream acoustic models in
WFST based speech recognition is using a common phonetic deci-
sion tree for different acoustic models. For example, a DNN acoustic
model trained over an alignment generated from a GMM acoustic
model would have a same phonetic decision tree. In this case, a
common H-level WFST can be composed with the common pho-
netic decision tree and then be used for decoding with {DNN,GMM}
combined acoustic models by simply combining likelihoods as ex-
plained in Section 2. In many acoustic models, however, the optimal
phonetic decision tree structure are different with feature types and
acoustic model training schemes. Sharing common phonetic deci-
sion tree for different acoustic model could degrade speech recogni-
tion accuracy.
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Fig. 3. Flowchart of the GPU-accelerated lattice generation with the
multi-stream acoustic model.

3.2. Phonetic decision tree combination

To overcome the limitation of the WFST composition, we combined
multiple phonetic decision trees into a single global tree which can
then be composed as in standard WFST composition. The global
tree maps a given context dependent phone to a virtual HMM state.
Each virtual HMM state maps to a set of HMM states as defined
in the original phonetic decision trees. Fig. 2 shows simple 2-way
phonetic decision tree combination. For a given context dependent
phone, tree1 maps it to HMM state s1.1 when answers of question
set (q1, q2) are (y, y) while tree2 maps it to s2.1. In this scenario, the
global tree tree1&2 maps it to a virtual HMM state s′1 which maintain
the mapping s′1 → (s1.1, s2.1). During decoding, log-likelihood score
of the virtual HMM state s′1 can be computed by combining the log-
likelihood score of s1.1 and s2.1 based on this map.

4. LATTICE GENERATION ON GPU-ACCELERATED
PLATFORM

While prior works [10, 11, 12] demonstrated the efficiency of us-
ing many-core GPU in speech recognition. They are not suitable
for lattice generation and keyword search. Generating the lattice is
usually slower than the standard Viterbi decoding since the decoder
must keep all sub-optimal forward links at each frame rather than
only the best backward link required to find the best path. Addition-
ally, on GPU-accelerated platforms, these sub-optimal forward links
must be copied from the GPU to the CPU for each time frame. This
communication overhead makes the lattice generation inefficient on
GPU-accelerated platform. For keyword search, large lattices are
preferred as they contain more hypotheses to search.

In this work, observation likelihoods in Phase 1 is computed on
the GPU, and Phase 2, graph traversal is performed on the CPU as
explained in [13]. The speed-up obtained with this implementation
is limited due to the overhead of transferring the frame-level log-
likelihood score between the CPU and the GPU. The size of log-
likelihoods scores, however, is relatively smaller than that of the in-
termediate lattice per frame. Therefore, it is often more efficient
to compute the log-likelihood scores on the GPU while generating
lattice on the CPU. In addition, As we are using physically indepen-
dent hardware, it is possible to execute Phase 1 and Phase 2 con-
currently as shown in Fig. 3. By computing log likelihoods for the

next frame, dependency between Phase 1. and Phase 2 can be re-
moved. Furthermore, multiple log-likelihood score computation can
be conducted concurrently by incorporating multi-stream or multi-
GPU techniques [14]. In this paper we generate lattices following
the approach described in [15].

5. EXPERIMENTAL EVALUATIONS

In this paper, we performed evaluation on Vietnamese dataset which
was recently released as the IARPA BABEL Program Vietnamese
language collection IARPA-babel107b-v0.7[16]. Each Limited lan-
guage pack training data consists of 10 hours of conversational
speech, and a separate 20 hours of test speech data, which is used
for evaluation.

5.1. Baseline system performance

For the baseline systems, we trained 3 HMM/GMM systems and 3
hybrid DNN/HMM systems on top of 3 different bottleneck features
(BNF) as described in [17]. The bottleneck features were extracted
from stacked auto-encoders having a bottleneck layer with 42 units,
which were trained to predict context dependent states. We used 3
different features to make the corresponding acoustic models com-
plementary. Since Vietnamese is tonal language, fundamental fre-
quency variation feature(FFV feature) [18] and pitch tracking[19]
were appended to the MFCC and log mel filterbank coefficients.
Each BNF is described in Table 1.

Bottle-neck feature for Experiments
BNF Dimension Input feature Input frames
BNF1 42 lmel + FFV 11
BNF2 42 lmel + FFV + Pitch 11
BNF3 42 MFCC +FFV 11

Table 1. BNF feature for Training DNN and GMM models

All of GMM and DNN systems which are listed in Table 2
share the decision tree for the 2172 context dependent HMM states.
GMM systems were trained with boosted maximum mutual infor-
mation(BMMI) training. During maximum likelihood(ML) training
stage, the alignment was extracted for DNN training. We trained
DNN systems with 2 sigmoid hidden layers containing 2500 units
each and soft-max output layer.

Model AM Feature WER ATWV
GMM1

GMM
BNF1 68.0% 0.1341

GMM2 BNF2 69.5% 0.1271
GMM3 BNF3 71.5% 0.1171
DNN1

DNN
BNF1 67.3% 0.1377

DNN2 BNF2 68.3% 0.1328
DNN3 BNF3 69.8% 0.1034

Table 2. Baseline systems in Vietnamese

The baseline results of Vietnamese are listed in Table 2.
DNN1 shows the best performance in terms of WER(67.3%) and
ATWV(0.1377). We took DNN1 as a baseline to see how much
combining models gives gain over the different models and features.
The same fixed beam was used for a fair comparison to produce
similar size of lattices, which affect ATWV[20].
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5.2. Combination for speech recognition accuracy

AM
Multi-stream Lattice combination Rover

WER WER WER
1 Model (DNN1) 67.3% 67.3% 67.3%
2 Models 64.7% (-3.9) 66.1% (-1.8) 66.6% (-1.0)
4 Models 63.6% (-5.5) 64.1% (-4.8) 65.2% (-3.1)
6 Models 63.6% (-5.5) 63.8% (-5.2) 64.9% (-3.6)

Table 3. Combination for speech recognition accuracy on Viet-
namese

Table 3 shows the comparison result of speech recognition accu-
racy between three different acoustic model combination approaches
- multi-stream, lattice combination and ROVER. When we combine
4 acoustic models in multi-stream, we got error reduction by 5.5%
relative while other lattice combination and ROVER got 4.8 % and
3.1% relative error reduction, respectively. Since Lattice Combi-
nation and ROVER require individual decoding result, their total
run-time increases proportional to number of acoustic models be-
ing combined. However, multi-stream combination performs single
pass decoding and therefore its run-time does not increase much even
though 6 models are combined while its speech recognition accuracy
outperforms the those of other methods.

5.3. Combination for keyword search

AM
Multi-stream CombMNZ
ATWV (RTF) ATWV (RTF)

1 Model (DNN1) 0.1377 (0.62) 0.1377 (0.62)
2 Models 0.1663 (0.62) 0.1548 (1.24)
4 Models 0.1776 (0.63) 0.1890 (2.48)
6 Models 0.1794 (0.64) 0.2024 (3.72)
6 Models (large lattice) 0.2281 (3.60)

Table 4. Combination for Keyword search on Vietnamese

Table 4 shows the comparison result of keyword search per-
formance between three different acoustic model combination ap-
proaches - multi-stream and CombMNZ. When we combine 6 DNN
models, we observed improvement in ATWV by 30% and 47% rela-
tive gain in multi-stream combination and CombMNZ, respectively.
When we increase beam size(lattice size), where we got run-time
similar to that of CombMNZ, multi-stream combination obtained a
15% higher ATWV than CombMNZ as shown in Table4. We can
say that multi-stream combination on GPU-accelerated platform is
the best combination method in keyword search task when an equiv-
alent run-time is given.

5.4. Analysis of complementary features, models and phonetic
decision trees

AM WER ATWV
DNN1 67.3% 0.1377
DNN1 + DNN2 65.9% (-2.1) 0.1577 (+14.5)
DNN1 + GMM1 65.3% (-3.0) 0.1628 (+18.2)
DNN1 + GMM2 64.7% (-3.9) 0.1663 (+20.8)

Table 5. Performance of multi-stream combination with different
model structures and features in Vietnamese

Here, we want to point out that which diversity of models and
features helps multi-stream combination more. From the Table 5,
we see that when we combine DNN and GMM models with same
features (DNN1+GMM1), the gain was larger than when we com-
bine DNN models with different features (DNN1+DNN2) in terms
of both WER and ATWV. It says that different model structures such
as GMM and DNN models are more important than different fea-
tures. By combining GMM and DNN models that also differ in
feature set (DNN1+GMM2), additional improvement was obtained
over the different models with same feature (DNN1+GMM1).

Model Phonetic Decision Tree Feature WER ATWV
DNN1

w/o Tree Diversity
BNF1 67.3% 0.1377

DNN2 BNF2 68.3% 0.1328
DNN3 BNF3 69.8% 0.1034
DNN1

w/ Tree Diversity
BNF1 67.3% 0.1377

DNN4 BNF2 67.7% 0.1424
DNN5 BNF3 69.2% 0.1201

Table 6. DNN systems with different phonetic decision tree

The proposed approach for combining phonetic decision en-
abled us to build acoustic model without any restriction on tree, we
were able to build better individual acoustic models by using more
efficient tree for each corresponding acoustic feature and model.
Here, we rebuilt DNN4 and DNN5 systems by using different pho-
netic decision trees which seemed to be more efficient to deal with
BNF2 and BNF3, respectively. As shown in Table 6, DNN4 and
DNN5 performs better than DNN2 and DNN3, which were trained
on same tree that DNN1 have been using.

AM WER ATWV
3 DNNs Combination(w/o Tree Diversity) 65.8% 0.1520
3 DNNs Combination(w/ Tree Diversity) 65.3% 0.1493

Table 7. Performance of multi-stream combination with different
phonetic decision tree

As shown in Table 7, combination of DNN acoustic models hav-
ing different phonetic decision tree performs better in terms of WER
while there was no improvement on ATWV. The diversity of pho-
netic decision tree is shown to extend the room for optimizing indi-
vidual acoustic models to be combined in multi-stream combination.
By this, we were able to obtain additional gain in multi-stream com-
bination.

6. CONCLUSION

In this paper we investigated the methods to combine multiple acous-
tic models having different features, model structures and phonetic
decision tree for LVCSR and keyword search task. By proposing
GPU-accelerated method to combine acoustic models and to gener-
ate lattice, multi-stream acoustic model combination was efficiently
performed in GPU platform. Our experiments in Vietnamese task,
multi-stream combination performs better than Lattice Combination
or ROVER in speech recognition accuracy with 5.5% error reduction
from single best model. Also it was shown that multi-stream acous-
tic model combination outperform CombMNZ when an equivalent
run-time is given for keyword search task. Our proposed approach
to combine phonetic decision tree enabled us to obtain gain from the
diversity of phonetic decision tree by using more efficient tree for
each acoustic model.
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