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ABSTRACT

While prior works have demonstrated the effectiveness of Graphic-
Processing Units (GPUs) for limited vocabulary speech recognition,
these methods were unsuitable for recognition with large language
models. To overcome this limitation, previously we introduced a
novel “on-the-fly rescoring” approach in which search was per-
formed over a WFST-network composed with a unigram language
model on the GPU, and partial hypotheses were rescored on-the-fly
using a large language model stored on the CPU. In this paper, we
extend our previous algorithm to enable on-the-fly rescoring to be
performed over an H-level network composed with any n-gram lan-
guage model, and show that using a longer language model history
in the H-level network improves decoding speed. We demonstrate
that large language models can be applied on-the-fly with no degra-
dation in decoding speed, realizing a LVCSR system that performs
recognition over 22× faster than a CPU implementation with no
loss in recognition accuracy.

Index Terms— Large Vocabulary Continuous Speech Recogni-
tion (LVCSR), Weighted Finite State Transducer (WFST), Graphics
Processing Units (GPU)

1. INTRODUCTION

In order to obtain high recognition accuracy, state-of-the-art speech
recognition systems for tasks such as broadcast news transcription
[1, 2] or voice search [3, 4] perform recognition with large vocabu-
laries (> 1 million words), large acoustic models (millions of model
parameters), and extremely large language models (billions of n-
gram entries). While these models can be applied in offline speech
recognition tasks, they are impractical for real-time speech recogni-
tion due to the large computational cost required during decoding.
While prior works [5, 6] have demonstrated the efficiency of using
many-core graphics processing unit (GPU) in speech recognition for
limited vocabulary tasks. These approaches, however, are not suit-
able for large vocabulary tasks as the limited memory on the GPU
architecture becomes a significant bottleneck when large acoustic
and language models are applied during recognition.

The most significant challenge is handling the extremely large
language models used in modern large vocabulary speech recogni-
tion systems [1, 2, 4]. These models can contain millions of unique
vocabulary entries, billions of n-gram contexts, and can easily re-
quire 20 GB or more to be stored in memory. Significantly pruned
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language models could fit within the limited memory available on
GPU platforms (< 6 GB), however, the speech recognition accuracy
would be severely degraded.

In [7], we proposed a novel on-the-fly rescoring algorithm
specifically optimized for GPU-accelerated platforms. In this ap-
proach a n-best Viterbi search was performed on the GPU using a
WFST composed with a unigram language model. Partial hypothe-
ses generated during search were rescored on-the-fly using a large
language model stored on the CPU. As the search network was com-
posed with a unigram language model, this earlier implementation
was limited in two significant ways. First, as the rescoring weight
was precomputed within the language model applied during rescor-
ing it could only be applied to fully composed H-level networks
to those composed with a unigram language model. Second, the
decoding speed was limited due to the large number of language
model look-ups required on the CPU when speech recognition was
performed with large language models.

In this paper, we extend our previous work in two ways. First,
we extend our on-the-fly rescoring algorithm to enable search to
be performed on any H-level WFST network. Second, we extend
our implementation to leverage multi-core CPUs reducing the time
required for language model look-up. Using these approaches we
are able to realize a GPU-accelerated speech recognition engine that
can efficiently incorporate large language models on-the-fly with no
degradation in decoding speed.

2. WFST-BASED SPEECH RECOGNITION ON
GPU-ACCELERATED PLATFORM

A WFST is a type of finite state automaton that describes a transduc-
tion from one symbol sequence to another, with input symbols i[·]
and output symbols o[·], as well as a weight w[·] defined on each of
its arcs in WFST N . In the WFST framework, we treat the speech
recognition problem as finding the minimally weighted transduction
from input speech signalO to word sequenceW . The overall weight
Ω(O →W ) on a WFST N transduces O into W can be written as:

Ω(O → Ŵ ) = min
W

{
min

f∈ΠN (O→W )
w[f ]

}
(1)

where Ŵ indicates the word sequence on the minimally weighed
path, ΠN (O → W ) denotes a set of complete paths such as f that
accept O and output W in N as derived in [3].

One of the advantages of using the WFST framework for speech
recognition is the unified framework used for representing differ-
ent knowledge sources, such as Hidden Markov Models (HMMs)
H , context-dependency phoneme model C, lexical or word pro-
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nunciation model L, and n-gram language model Gn with weight
− logP (O|V ), 0,− logP (V |W ),− logP (W ) respectively, where
V is a phoneme sequence. These knowledge sources can be com-
posed together and optimized for speed and size ahead of decoding
[8]. In this work, we use the fully composed HMM state level (H-
level) WFST network

Nn = H ◦ C ◦ L ◦Gn (2)

where “◦” is a composition operator.

2.1. Standard decoding (one-pass strategy)
In a standard time-synchronous Viterbi search, an empty path or hy-
pothesis f is assign to the initial state of N and generates a new
hypothesis f ′ by adding a transition e originating from the final state
of f , n[f ] for each time frame. The accumulated weight w[f ′] can
be calculated as

w[f ′] = w[f ] + w[e] (3)

when we use the negative log likelihood as weights. Viterbi search
selects the best hypothesis (incoming path with minimum weight)
from competing hypotheses that meet at the same state in N . The
search process over an H-level WFST consists of two phases. First,
weights from observation likelihoods are computed for each active
state within the search space (Phase 1). Next, traversal over the
WFST is performed guided by computed weights and the WFST
graph structure (Phase 2)

Prior works [9, 10, 11] implemented speech recognition on
GPU-accelerated platforms. In these works, observation likelihoods
in Phase 1 were computed on the GPU, and Phase 2, graph traver-
sal was performed on the CPU. The speed-up obtained with this
implementation was limited due to the overhead of communicat-
ing intermediate results between Phase 1 and 2 at every time step.
[5, 6, 12] implemented both Phase 1 and 2 on the GPU to eliminate
unnecessary data transfer between the CPU and the GPU. This en-
abled more than an order of magnitude speed-up compared to an
optimized sequential implementation. However, the language mod-
els that could be applied during decoding were limited to WFSTs
which can be fitted within the local GPU memory (∼ 6GB).

2.2. Lattice rescoring (two-pass strategy)
One typical approach of applying an extremely large language model
to speech recognition is generating a lattice first using a lower order
pruned language model and then conducting lattice rescoring using a
significantly larger model [13]. In the WFST framework, the lattice
generated from the first path, lower and higher order language model
are represented as WFST, T , Gl, Gh respectively. The rescored lat-
tice can be composed as:

T ′ = det(T ◦ (−Gl)) •Gh (4)

where det is determinization operation as described in [8] and “•” is
a special composition operation by matching a φ symbol that indi-
cates back-off arcs in G [14]. Finding the minimally weighted path
from T ′ is effectively finding Ŵ has weight as

Ω(O → Ŵ ) = min
W

{
min

h∈ΠN (O→W )
wN [h]

− min
f∈ΠGl

(W )
wGl [f ] + min

g∈ΠGh
(W )

wGh [g]
}
.

(5)

Note that ΠG(W )[·] denotes a set of complete paths accepting the
word sequence W .

Generating the lattice is usually slower than the standard Viterbi
decoding since the decoder must keep all sub-optimal forward links
at each frame rather than only the best backward link required to find
the best path. Additionally, on GPU-accelerated platforms, these
sub-optimal forward links must be copied from the GPU to the CPU
for each time frame. This communication overhead makes the lattice
generation inefficient on GPU-accelerated platforms. In this paper,
we compare the performance of the lattice rescoring to the proposed
algorithm. We generate lattices following the approach described in
[15]. WFST search is performed on the GPU, while the lattice is
generated dynamically on the CPU.

2.3. On-the-fly composition (one-pass strategy)
On-the-fly composition approaches dynamically build a WFST on-
the-fly during decoding with multiple WFSTs [16, 17, 18, 19]. The
most common approach is to decouple the language model from the
other components. A WFST such as, C ◦ det(L) (and possible the
acoustic model H) is composed offline. Then in the recognition
phase, search performs an additional on-demand composition of the
C ◦ det(L) with G during decoding.

This method has been shown to be economical in terms of mem-
ory without any accuracy degradation. In this approach, however,
all WFSTs should be stored on the GPU memory for the on-demand
composition. In this paper, we do not compare the on-the-fly com-
position algorithm to the proposed algorithm as it does not solve the
problem of limited GPU memory during search.

2.4. On-the-fly rescoring (one-pass strategy)
In this approach, partial hypotheses or lattices are generated from
Nl, but they are weighted based on (5) during a time synchronous
Viterbi search using a higher order language model to solve (5) in
a one-pass strategy [3, 7, 20]. The main difference from two-pass
strategy is the decoder uses all knowledge sources during search.
This is effective for both correct path selection and pruning [3] and
obtains faster decoding speeds compared with on-demand composi-
tion while using less memory when compared with standard decod-
ing [21].

[3, 7, 20] use a similar concept for on-the-fly rescoring, how-
ever the purpose, implementation and target platform are different.
[3] generates partial hypotheses during search Nl, and produce co-
hypotheses by matching symbol sequences between Nl and Gl/h

similar to the on-the-fly composition approach only when the hy-
potheses outputs a word symbol. This approach requires a fully com-
posed WFST Nh before factoring Nh into Nl and Gl/h which may
not be feasible. Additionally, the language model should be repre-
sented as WFST which is not possible for some language models
(i.e. neural network language models).

Compared to [3], [20] provides a more general rescoring frame-
work. This approach conducts n-best search over Nl generating a
lattice which contains only the resulting acoustic model scores. This
resulting lattice is then rescored using a higher order language model
to generate a rescored lattice on-the-fly. This approach assumed that
the overall weight Ω(O → Ŵ ) consisted only of weights from
acoustic model and the language model. This may cause an accu-
racy degradation if the word pronunciation transducerL has different
weight, − logP (V |W ), across different pronunciations of a word.

In [7], we proposed an efficient on-the-fly rescoring algorithm
specifically developed for GPUs which allowed extremely large lan-
guage models to be applied while maintaining the superior through-
put of a GPU-accelerated implementation. This method conducted
n-best decoding similar to [20], but did not omit any language model
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i[e3] : a/1

s1

f1 2 ba
f2 5 bc

s2

s3

i[e1] : ε/1

i[e2] : ε/2

timeti−1 ti

s4

ti−2

f w[f ] hh[f ]
f ′1 3 ba
f ′4 5 ac

f ′′4 5 ca
f ′′1 6 aa

f3 2 ba
f4 3 ac

Fig. 1. Example of the proposed algorithm whenN2 is rescored with
3-gram language model (wR(f ′1, a) = 2, wR(f ′4, a) = −1).

weights. However, the approach was limited to a unigram language
model on the GPU and the different computation between unigram
and higher order language model weight on CPU limiting the overall
decoder speed.

3. GENERALIZED ON-THE-FLY RESCORING

In our proposed method, n-best time-synchronous Viterbi search is
performed on the GPU using Nl which is composed using lower
order language model. Higher order language models are stored and
accessed on the CPU during search. In this method, a new hypothesis
f ′ is generated by adding a transition e originating from n[f ] for
each time frame regardless of o[e]. If transition e outputs nothing
(o[e] = ε and o[f ′] = o[f ]), rescoring is not applied and follows
the standard decoding as explained in Section 2.1. Only when the
transition e outputs a non-epilson symbol (o[e] 6= ε and o[f ′] 6=
o[f ]), partial hypothesis f ′ is rescored. The weight of f ′ can be
calculated as

w[f ′] = w[f ] + w[e] + wR(f, o[e]) (6)

where wR is a rescoring weight. We can calculate the rescoring
weight by subtracting the lower order language model weight from
the higher order language model on the CPU corresponding to (5) as

wR(f, o[e]) = − logP (o[e]|hl[f ])−
{
− logP (o[e]|hh[f ])

}
(7)

where hl[f ], hh[f ] is a recent word history of f for the lower and
higher order language model, respectively.

In the proposed algorithm, n-best Viterbi search is conducted
by assigning a n-best hypotheses list to each arc and state. When
multiple arcs meet at the same state, n-best hypotheses lists are
merged and the Viterbi search chooses n minimally weighted hy-
potheses across all n-best hypotheses lists. In Fig. 1, f ′1 from state
s1 and f ′4 from state s2 are maintained and sorted based on their to-
tal weight. In addition, if hypotheses have same higher order history,
only less weighted hypothesis will be maintained. For example, f ′3
is pruned because this hypothesis has same higher order history “ba”
but higher weight compared with f ′1 when these are meet in s3.

Keeping the n-best list is important to achieve comparable ac-
curacy [7]. If we choose the best hypothesis as explained in Sec-
tion 2.1, the partial hypothesis of the final best hypothesis f̂ can be
pruned out before it reach to an transition e with a non-epsilon out-
put where a hypothesis can be rescored. This scenario is illustrated
in Fig. 1 where the hypothesis f ′′1 is the original best path using
the standard decoding approach and f ′′4 is the rescored best path. If
we only kept the best hypothesis, the partial hypothesis f ′4 of the

Algorithm 1 Parallel n-best list merge and sort algorithm.
1: while i, j < n do . For each GPU thread
2: g′j ← gj
3: if w[fi] > w[gj ] then
4: increment j
5: else
6: if h[fi] 6∈ h[g] then
7: g′′j ← atomicCAS(gj , g

′
j , fi) . Returns current gj

8: if g′′j = g′j then
9: Insert(f, gj)

10: increment i, j
11: end if
12: else
13: increment i
14: end if
15: end if
16: end while

rescored best path f ′′4 would be pruned in s3 and could not reach to
the arc e3 between s3 and s4 where the rescoring would be applied.

The maximum size of the n-best list is determined carefully
based on the size of the vocabulary and the order of the language
model. For a given a vocabulary size, a WFST composed with lower
order language model requires a larger n compared to that composed
with higher order language model to achieve comparable accuracy.
Similarly, a WFST that has a larger vocabulary requires a larger n-
best list to retain partial hypotheses until they reach a rescoring point.

4. OPTIMIZATION DETAILS

4.1. Parallel n-best list merge-and-sort on the many-core GPUs
The most important parallelization challenge during the n-best
Viterbi search on the many-core GPU is the merging of n-best list
on reconvergent paths. There may be hundreds of arcs, each with
an n-best list, trying to write into the n-best list at the destination
state at a same time. We handled this challenge by developing a new
technique to merge the n-best list atomically on a highly parallel
platform using atomic Compare-And-Swap (atomicCAS) operations
[22]. The GPU provides hardware supported atomic operations that
are efficiently implemented. We leverage this capability to im-
plement our n-best parallel “merge-and-sort” algorithm on this
platform as described in Algorithm 1.

4.2. Parallel language model look-up on the multi-core CPU
In the proposed algorithm, the language model look-up phase is con-
ducted on CPU which consists of following steps:

1. Copy h[f ], o[e] from GPU to CPU.

2. Compute wR(f, o[e]) following (7) on CPU.

3. Update h[f ′], wR(f, o[e]) from CPU to GPU.

In our previous work, we observed that with large vocabularies the
execution time of language model look-up on the CPU increased
rapidly compared to the other phase [7]. To resolve this problem, we
parallelize step 2 above using OpenMP [23]. Furthermore, as we are
using physically independent hardware, it is possible to completely
hide the latency of the language model look-up by executing the lan-
guage model lookup (on CPU), and acoustic score computation (on
GPU) concurrently.
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Vocab. n-gram # of n-gram WFST (MB) LM binary (MB)

1M

1 1.0M 91 1
2 (Pruned) 15.1M 2,342 357
3 (Pruned) 10.1M 3,583 407

4 769.9M - 19,554

Table 1. Size of WFSTs and binary language models.

5. EXPERIMENTAL EVALUATION

We evaluated the effectiveness of our proposed “generalized on-the-
fly rescoring” algorithm on a large vocabulary version of the WSJ
task. We used a combined evaluation set consisting of the November
1992 ARPA WSJ 5k evaluation set (330 sentences) and the Novem-
ber 1993 ARPA WSJ 20k evaluation set (213 sentences, open vocab-
ulary). A deep neural network (DNN) acoustic model was trained
using the WSJ data set with 39 dimensional MFCCs feats with a
LDA transformation as described in [24, 25]. The resulting acous-
tic model contained 2,946 phonetic states and consisted of 4 hidden
layers, each with 2,000 hidden units.

WFSTs were composed and optimized offline for efficient par-
allel time-synchronous graph traversal on GPU-accelerated platform
as described in [5, 6]. Table 1 shows the size of the final fully-
composed WFSTs for pruned 1 Million vocabulary language mod-
els. A vocabulary of 1 Million words and a 4-gram language model
with 770 Million entries was applied during decoding. We evalu-
ate the proposed algorithm using a single GPU in a 8-way NVIDIA
Tesla C2075M GPU server with two Intel Xeon E5-2640 6-core
CPUs. The NVIDIA Tesla C2075M GPU contains 448 CUDA cores
and 6GB GDDR5 memory.

We compared three decoding schemes: Standard decoding us-
ing a WFST composed with a 3-gram language model (STD-3), lat-
tice rescoring where the resulting 3-gram lattice was rescored with
a 4-gram language model(LATR-3.4), and the proposed on-the-fly
rescoring approach where 3-gram partial hypotheses were rescored
during search with a 4-gram language model (OTFR-3.4).

5.1. Recognition accuracy

First, we validated the accuracy of the proposed approach (OTFR)
by comparing it’s performance to standard lattice rescoring (LATR)
techniques. We generated 2 fully composed WFSTs using the same
knowledge sources but different, highly pruned, {2, 3}-gram lan-
guage models (N2 and N3) . Decoding with N2, N3 and rescoring
on-the-fly using a 4-gram language model obtained the same 5.5%
Word Error Rate (WER) as LATR-3.4. During decoding n-best lists
of size 5 and 3 were used for the bigram and trigram respectively.

Phase Baseline +OpenMP Proposed
Active Set Preparation 0.03 0.03 0.03

Observation likelihood computation 0.02 0.02 0.02
Language Model Look-up 0.39 0.04 0.03

WFST Search 0.01 0.01 0.01

Table 2. Processing time (RTF) per phase. (n3.4 = 3, m3.4 = 12
CPU cores)

For the bigram case a larger n is required to to achieve comparable
WER, as explained in Section 3.

5.2. Decoding Speed
Next, we evaluated decoding speed using both the single core CPU
implementation and our proposed heterogeneous CPU-GPU imple-
mentation. The baseline CPU implementation is optimized using
Automatically Tuned Linear Algebra Software (ATLAS) to acceler-
ate the acoustic weight computation process [26].

In Table 2, the baseline shows decoding speed of the proposed
algorithm without the optimization explained in Section 4.2. The
language model look-up consumed the majority of the decoding
time. By performing language model look-up using 12 CPU cores
the time required for look-up is reduced by factor of 9.8× from
0.39 to 0.04 RTF. Finally, by performing language model look-up
concurrently with the acoustic weight computation on the GPU the
decoding time is reduced further from 0.11 RTF to 0.09 RTF.

In the OTRF-3.4 case, decoding was performed, 11× faster than
real-time when the WER was 5.5%. This was 22× faster than a
highly optimized single CPU implementation. OTFR-3.4 was 40%
faster (0.11 vs. 0.24 RTF) than OTFR-2.4 indicating that a WFST
composed with the higher order language model converges faster
than the lower order case.

6. CONCLUSION

In this paper we proposed a generalized on-the-fly rescoring ap-
proach to enable efficient decoding with extremely large language
models on the heterogeneous CPU-GPU platforms. The proposed
approach enables search to be performed on an H-level WFST net-
work composed with an n-gram language models of any length. By
parallelizing language model look-up on the CPU and implementing
a parallel n-best list merge-and-sort on the GPU, our LVCSR system
was able to realize recognition with a 1 Million word vocabulary at
11× faster than real-time, approximately 22× faster than a single-
threaded CPU implementation.
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