
PROGRESS IN DYNAMIC NETWORK DECODING

David Nolden 1,2, Hagen Soltau 2, Hermann Ney 1

1 RWTH Aachen University, Ahornstr. 55, 52056 Aachen, {nolden,ney}@cs.rwth-aachen.de
2 IBM T. J. Watson Research Center, Yorktown Heights, NY, 10598, hsoltau@us.ibm.com

ABSTRACT

We show how we boosted the efficiency of the dynamic

network decoder in IBM’s Attila speech recognition frame-

work, by transforming the underlying concept from token-

passing to word-conditioned, and adding speedup methods

like sparse LM look-ahead. On several different tasks, we

achieve improvements of 30 to 50% in efficiency at equal

precision. We compare the efficiency to a state-of-the-art

WFST based static decoder, and note that the added methods

improve the dynamic decoder under conditions where it was

lacking before in comparison, specifically when using a rela-

tively small LM. Overall, the new dynamic decoder performs

similarly to the static decoder, with a lead for the dynamic

decoder on tasks with a larger LM, and a lead for the static

decoder on tasks with a smaller LM.

Index Terms— Decoding, dynamic, static, progress,

token-passing, word conditioned

1. INTRODUCTION

Decoders comprising a statically compiled and optimized

search network are commonly believed to be the fastest ap-

proach to decoding in large vocabulary continuous speech

recognition [1, 2]. In such decoders the different knowledge

sources are represented by weighted finite state transducers

(WFST), which are composed and optimized in a preprocess-

ing step to form a unified static search network. This allows

early path recombination, language model (LM) lookup, and

LM look-ahead, without inducing any runtime overhead [3].

Unfortunately such a statically composed network may be-

come too large when using a large LM, in which case a pruned

LM has to be used for the composition. The static decoder

then needs to generate lattices, which can be rescored using

the unpruned LM in a succeeding pass. Lattice generation in

a WFST based decoder is nontrivial and typically induces a

significant runtime overhead.

Dynamic network decoders on the other hand statically

compose a search network representing only the single words

in the vocabulary, and integrate the LM on-demand during

decoding [4].

Later dynamic decoders based on the WFST paradigm us-

ing dynamic composition were proposed [5]. The dynamic

composition may become a major bottleneck though, espe-

cially when using a large vocabulary, and effective pruning

methods are more difficult to apply than in classical dynamic

network decoders [6].

Classical dynamic network decoders combine the single-

word search network and the LM without relying on the

WFST composition paradigm. The single-word search net-

work may still be minimized to optimize the efficiency and

memory usage [2, 7]. Since the topology of the single-word

search network is static, the knowledge about path recombi-

nation in the network can be exploited to implement effective

pruning methods like word end pruning and LM state pruning

[8, 9].

Dynamic network decoders can typically be split into

two categories: Token-passing decoders [10, 2] and word-

conditioned decoders [4]. Theoretically both have the same

search search space, although the search space has a different

topology, with different implications regarding efficiency. In

token-passing decoders the hypotheses are grouped by the

state in the single-word search network which they corre-

spond to. Such grouping allows straight-forward minimiza-

tion of the search network with early path recombination. The

recombination of hypotheses is difficult though, and an addi-

tional pruning step is required to constrain the effort of state

hypothesis recombination. In word-conditioned decoders on

the other hand, hypotheses are grouped by their LM context

in virtual tree copies. This allows for very efficient hypothesis

recombination, however it complicates the minimization of

the search network.

A typical weakness of dynamic network decoders is the

LM look-ahead: To apply correct full-order LM look-ahead,

one look-ahead table with a size linear to the vocabulary needs

to be computed for each observed LM context [11]. Recently

we proposed sparse LM look-ahead [12] as a solution to this

problem for word conditioned decoders. Sparse LM look-

ahead limits the effort to those words which are actually cov-

ered by the n-gram LM in the corresponding context, instead

of the full vocabulary.

In [7] we presented a detailed comparison of the word

conditioned and token-passing approach, and we combined

the advantages of both, by introducing search network mini-

mization, and LM state pruning, into a word conditioned de-

coder. In this work we do the opposite: We start with an effi-

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 3300

cient token-passing decoder, and turn it into a decoder which

combines the advantages of both architectures, including the

thorough pruning of the token-passing decoder, the efficient

hypothesis recombination of a word conditioned decoder, and

sparse LM look-ahead.

In Section 2 we briefly compare the token-passing and

word conditioned decoding concept, in Section 3 we describe

the used token passing decoder, in Section 4 we describe how

we turned it into a word conditioned decoder, and in Section

5 we evaluate the improvements experimentally against an ef-

ficient WFST based static decoder.

2. THEORETICAL COMPARISON

As described in [7], the fundamental difference between a to-

ken passing decoder and a word conditioned decoder is the

organization of the active search space. Let (h, s, q) be an

active state hypothesis with LM context h, network state s,

and probability q. In a token-passing decoder the state hy-

potheses are grouped by network state s, whereas in a word

conditioned decoder they are grouped by LM context h.

For state hypothesis recombination according the the

Viterbi approximation, different state hypotheses (h, s, q)
and (h′, s′, q′), which share the same LM context h = h′

and the same network state s = s′, need to be identified, and

only the one with the higher probability retained. In a word

conditioned decoder, the hypotheses are grouped by their

LM context h, and thus only the state s needs to be matched

during recombination, which can be done in linear time us-

ing a simple table of size S (eg. the number of states in the

network). In a token-passing decoder hypotheses are grouped

by their state s, and during recombination, equal histories

h need to be matched. This matching can not be performed

using a simple table, because the number of different histories

can be arbitrarily large when using a large LM. In our basic

token-passing decoder a simple linear search is performed to

do the matching, which is more efficient than complex data

structures, given that the number of different LM contexts

sufficiently is low [2]. Due to the more efficient hypothesis

recombination, we expect a word conditioned decoder to be

more efficient than a token passing decoder, at least if it is

based on an equally optimized search network and exploits

the same pruning methods.

3. TOKEN PASSING DECODER

Our basic token passing decoder was introduced in [2]. It is

part of IBM’s Attila speech recognition toolkit [13], and uses

a single-word search network fully minimized up to HMM

state level. Additionally the network is factorized, eg. lin-

ear HMM state sequences are combined into a single node.

Within these nodes a more efficient specialized dynamic pro-

gramming algorithm, with trivial hypothesis recombination,

can be applied. Only loop and forward transitions are sup-

ported by the models, and the last state of each node is a vir-

tual final state without an actual model, only used as origin for

the outgoing cross-node transition. Usually this factorization

reduces the size of the network and the costs of cross-node

transitions by a large factor. Transition across nodes are im-

plemented by an ǫ transition from the final state of each node

into the initial state of all successor nodes. The recombination

of LM contexts is done during the cross-node transitions, thus

the cross-node expansion is one of the most expensive phases

during decoding. States within a factorized node share many

important attributes like the LM look-ahead table entry, thus

the factorization also helps reducing the amount of repetitive

costly lookup of redundant information. The decoder stores a

heap of LM conditioned instances in each node, and the full

sequence of HMM state hypotheses is allocated for each ac-

tive node instance, whether the actual hypothesis is active or

not.

3.1. Pruning

The score of the best HMM state hypotheses in each node

instance is recorded on-the-fly, and many operations which

would normally require looking at all HMM state hypotheses,

like for example LM state pruning, can be performed more ef-

ficiently on the level of the factorized node instances, because

there is much less of them. As a positive side-effect, treat-

ing factorized HMM state sequences as a unit may increase

the effectiveness of the pruning, because all states of a factor-

ized state sequence share an equal set of reachable successor

paths. As shown in [9], this allows us to relate the correspond-

ing hypotheses to each other during pruning, because all their

successor hypotheses will be recombined within a short inter-

val.

Overall three pruning methods are used: Global beam

pruning is applied to all state hypotheses, word end pruning

is applied at cross-node transitions corresponding to physical

word-ends, and LM state pruning is applied locally to the ac-

tive instances of each factorized node. Additionally their top-

N equivalents are used. The top-N LM state pruning plays a

special role, because it is required by the token passing de-

coder, to keep the effort of the LM state recombination dur-

ing cross-node expansion tractable. Usually the beams are

not tuned per task, but rather there is a set of pre-chosen com-

binations for different efficiency levels out of which one is

selected based on a master beam.

4. WORD CONDITIONED DECODER

To transform the token-passing decoder into a word condi-

tioned decoder, we had to re-design the core algorithm of

the decoder, however we use the same underlying minimized

search network.

3301

While in the token-passing decoder a heap of instances

is managed for each node in the network, we can simplify

this in the word conditioned search (WCS) decoder, by us-

ing just one global array of instances, together with a local

array of entry hypotheses, for each active tree instance. State

hypotheses are grouped into tree instances, where each tree

instance corresponds to one specific LM history. We enforce

a strict order of the tree instances, according to their LM his-

tories. We keep the global node instance array in the same

order, thus each tree instance only needs to store the index of

its first node instance. The dynamic programming procedure

applied at each timeframe looks as follows:

1. Apply local dynamic programming within active node

instances.

2. Prune HMM state hypotheses and instances, set proba-

bility of unwanted hypotheses to zero.

3. For each successor node of an active final state, add

a new entry hypothesis to the corresponding successor

tree instance.

4. For each tree instance, recombine active hypotheses

with entry hypotheses, and remove zero-probability

node instances, writing a new node instance array on-

the-fly.

Transitions are more expensive when leaving nodes with

a word label, because the LM context is extended, and the en-

try needs to be inserted into the corresponding successor tree

instance. To find the target tree instance quickly, we maintain

a simple approximate hash within each tree, which maps from

a word label to the corresponding successor tree instance.

We added sparse LM look-ahead as described in [12]:

Tree instances are conditioned on their n-gram level addition-

ally to ther LM context, and a transition to the backoff level

tree instance is performed, whenever there is no entry in the

sparse LM look-ahead table on the current n-gram level.

4.1. Pruning

The word conditioned decoder supports exactly the same

pruning methods as the token passing decoder (see Subsec-

tion 3.1), thus the search space is nearly equal to the token-

passing decoder, when using the same pruning configuration

(slight discrepancies arise from minor differences in the order

of applied pruning during the expansion of cross-node transi-

tions). The top-N LM state pruning, which limits the number

of active LM contexts for each node, is less natural to apply

in a WCS decoder than in a token-passing decoder, because it

does not match the way hypotheses are organized. Neverthe-

less, it can be applied efficiently, by exploiting the fact that

usually only very few states are affected by this pruning. We

simply count the number of surviving instances for each node

during pruning, and only invest additional effort for those

nodes which exceed the limit.

Since the dynamic programming within a factorized node

is cheaper than the transition across a node boundary, and

since the cross-boundary transition within a tree is cheaper

than the transition across trees, we added two additional

pragmatic pruning methods: Final-pruning applies a sharper

global beam to any final HMM states, and label-pruning ap-

plies an even sharper global beam to final HMM states of

nodes which have a word label attached. We define final-

pruning as a factor relative to the global beam, and label-

pruning as a factor relative to final-pruning.

5. EXPERIMENTAL RESULTS

The static graph Viterbi decoder we use for comparison was

described in [14] and [2]. Both decoders are implemented

in C++ and integrated in IBM’s Attila speech recognition

toolkit [13]. We evaluate efficiency in terms of RTF (real

time factor) as measured on an Intel Xeon X5680 processor

with 3.33GHz. We use two basic systems for comparison,

which only slightly differ from those used in [2]:

1. English BN with 90k pronunciations, SA models,

150k Gaussians, speaker adaptive and discriminatively

trained, with 3.3M (small) or 200M (large) 4-gram LM.

2. Vowelized Arabic BN with 2.5M pronunciations for

754k LM words, 400k Gaussians, speaker adaptive and

discriminatively trained, 500M 4-gram LM (2.1M for

static graph building).

Figure 1 compares the efficiency on the English task us-

ing the small 3.3M n-gram LM. The token-passing and WCS

decoders perform similarly, and adding the label- and final-

pruning improves efficiency only slightly. Adding sparse LM

look-ahead reduces the RTF by around 50% at equal preci-

sion, which is to be expected due to the sparseness of the

small 4-gram LM. The static decoder without lattice genera-

tion is faster by another 30%. When adding lattice generation

to the static decoder, then the dynamic with sparse LM look-

ahead and the static decoder end up on a similar efficiency

level.

Figure 2 compares the efficiency on the English task us-

ing the large 200M 4-gram LM. Token-passing and WCS per-

form similarly, and adding final- and label pruning slightly

improves efficiency. adding sparse LM look-ahead improves

efficiency by around 30%. The static decoder can not use

the 200M n-gram LM directly in graph building, thus it first

generates lattices based on a graph generated with the smaller

3.3M n-gram LM, and then rescores those lattices using the

full LM. Overall, the dynamic decoder with sparse LM look-

ahead is slightly more efficient than the static decoder on this

task.

3302

 15.5

 16

 16.5

 17

 17.5

 18

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

W
E

R

RTF

Token Passing
WCS...

+ Pruning
+ Sparse
Static...
+ Lattice

Fig. 1. English BN, 3.3M 4-gram LM, 90k voc.

 13.5

 14

 14.5

 15

 15.5

 16

 16.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

W
E

R

RTF

Token Passing
WCS...

+ Pruning
+ Sparse

Static...
+ Rescore

Fig. 2. English BN, 200M 4-gram LM, 90k voc.

Figure 3 compares the results on the Arabic task using the

500M 4-gram LM. The WCS decoder is around 20% faster at

equal precision than the token-passing decoder on this task

which requires a much larger search space than the previ-

ous tasks. Whether the added final- and label pruning im-

proves efficiency is unclear from the graph. However adding

sparse LM look-ahead gives another 15 to 20%, despite the

large LM which actually isn’t that sparse any more in prac-

tice (measurements have shown that for the actually requested

LM contexts, the LM has an n-gram entry for around 40% of

all successor words). The WCS based dynamic network de-

coder with sparse LM look-ahead is considerably more effi-

cient than the static decoder with LM rescoring on this task. A

disadvantage of the static decoder, which uses the small LM

during decoding, is that it’s search is less focussed than when

using the full LM, and thus it has to evaluate more Gaussian

densities to cover an equally good set of hypotheses.

 9.8

 10

 10.2

 10.4

 10.6

 10.8

 11

 11.2

 11.4

 0 0.2 0.4 0.6 0.8 1

W
E

R

RTF

Token Passing
WCS...

+ Pruning
+ Sparse

Static Rescore

Fig. 3. Gale Arabic, 500M 4-gram LM, 2.5M pronunciations,

754k LM words.

6. CONCLUSIONS

We have shown that the decoder based on hybrid word con-

ditioned search is usually a bit more efficient than the pre-

vious token-passing decoder. Sparse LM look-ahead highly

improves the efficiency of dynamic network decoders, unless

the lexicon is so small that LM look-ahead is not a concern

regarding efficiency. A dynamic network decoder has the ad-

vantage of very effective pruning methods, and it can use the

full LM right during decoding to focus the search, both of

which allow a well-crafted dynamic network decoder to beat

a rescoring-based static decoder in efficiency, especially when

using a large LM.

7. RELATION TO PRIOR WORK

In [7] a similar experiment was conducted, by modifying a

word conditioned dynamic network decoder to integrate the

advantages of a token-passing decoder. In this work we go

further by also exploiting factorization, and comparing to a

WFST based static decoder. A comparison between the basic

token-passing decoder and the static decoder was previously

performed in [2].

8. ACKNOWLEDGEMENTS

Supported by the Intelligence Advanced Research Projects

Activity (IARPA) via Department of Defense U.S. Army Re-

search Laboratory (DoD / ARL) contract number W911NF-

12-C-0012.1

1The U.S. Government is authorized to reproduce and distribute

reprints for Governmental purposes notwithstanding any copyright annota-

tion thereon. Disclaimer: The views and conclusions contained herein are

those of the authors and should not be interpreted as necessarily representing

the official policies or endorsements, either expressed or implied, of IARPA,

DoD/ARL, or the U.S. Government.

3303

9. REFERENCES

[1] S. Kanthak, H. Ney, M. Riley, and M. Mohri, “A Com-

parison of two LVR Search Optimization Techniques,”

in ICSLP, Denver, CO, USA, Sept. 2002, pp. 1309–

1312.

[2] H. Soltau and G. Saon, “Dynamic Network Decoding

Revisited,” in ASRU, 2009.

[3] M. Mohri, F. Pereira, and M. Riley, “Speech Recog-

nition with Weighted Finite State Transducers,” in

Handbook of Speech Processing. 2008, pp. 559–582,

Springer.

[4] H. Ney and S. Ortmanns, “Progress in Dynamic Pro-

gramming Search for LVCSR,” in Proceedings of the

IEEE, Barcelona, Spain, August 2000, vol. 88, pp. 1224

– 1240.

[5] C. Allauzen, M. Mohri, M. Riley, and B. Roark, “A

Generalized Construction of Integrated Speech Recog-

nition Transducers,” in ICASSP, Merano, Italy, Decem-

ber 2009.

[6] D. Nolden, R. Schluter, and H. Ney, “Advanced Search

Space Pruning with Acoustic Look-Ahead for WFST

Based LVCSR,” in ICASSP, 2013.

[7] D. Nolden, D. Rybach, R. Schlüter, and H. Ney,

“Joining Advantages of Word-Conditioned and Token-

Passing Decoding,” in ICASSP, 2012.

[8] D. Nolden, R. Schlüter, and H. Ney, “Extended Search

Space Pruning in LVCSR,” in ICASSP, 2012.

[9] D. Nolden, R. Schlüter, and H. Ney, “Search Space

Pruning Based on Anticipated Path Recombination in

LVCSR,” in Interspeech, 2012.

[10] S. J. Young, N. H. Russell, and J. H. S. Thornton, “To-

ken Passing: a Simple Conceptual Model for Connected

Speech Recognition,” in Tech. Report, Cambridge Uni-

versity Engineering Department, 1989.

[11] S. Ortmanns, H. Ney, and A. Eiden, “Language-Model

Look-Ahead for Large Vocabulary Speech Recogni-

tion,” in ICSLP, Sydney, Australia, Oct. 1998, pp. 2095–

2098.

[12] D. Nolden, H. Ney, and R. Schlüter, “Exploiting Sparse-

ness of Backing-Off Language Models for Efficient

Look-Ahead in LVCSR,” in ICASSP, Prague, Czech Re-

public, 2011.

[13] H. Soltau, G. Saon, and B. Kingsbury, “The IBM At-

tila Speech Recognition Toolkit,” in Spoken Language

Technology Workshop (SLT), 2010 IEEE.

[14] G. Saon, D. Povey, and G. Zweig, “Anatomy of an Ex-

tremely Fast LVCSR Decoder,” in Interspeech, 2005.

3304

