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ABSTRACT

In this paper, we focus on the challenging task of the online esti-

mation of the state and the unknown measurement noise density in

nonlinear dynamic state-space models. We are especially interested

in making inference in the presence of impulsive and time-varying

noise. A flexible Bayesian nonparametric noise model based on an

extension of Dirichlet Process Mixtures, namely the Time Varying

Dirichlet process Mixtures, is introduced. A novel method based on

sequential Monte Carlo methods is proposed to perform the optimal

online estimation. Simulation results demonstrate the efficiency and

the robustness of this method.

Index Terms— Bayesian nonparametric, Time-Varying Dirich-

let Process Mixture, impulsive noise, α-stable process, particle filter

1. INTRODUCTION

In signal processing literature, noise sources are often assumed to

be Gaussian. However, in many fields the conventional Gaussian

noise assumption is inadequate and can lead to the loss of resolution

and/or accuracy. This is particularly the case of noise that exhibits

multimodality and impulsivity. For example, the latter is found in

various areas [1–4]. In fact, impulsive noise tends to produce large

amplitude excursions from the average value more frequently than

Gaussian signals. It contains sharp spikes or occasional bursts. As

a result, its probability density function (pdf) decays in the tails less

rapidly than Gaussian pdf [5]. Moreover, in most practical applica-

tions, the distribution of the errors cannot be perfectly known and

may also vary through time. Therefore, it is important to have ef-

ficient estimation procedure being able to deal with unknown mea-

surement noise density. In this paper, we address the problem of the

optimal state estimation when the time-varying probability density

function of the measurement noise sequence is unknown and need to

be estimated on-line from the data.

Several algorithms have been developed to estimate noise statis-

tics in dynamical systems. Most of them are based on a given prior

parametric shape of the unknown density, i.e. student-t, α-stable [6]

or finite mixture of Gaussians [7]. Thus, the algorithm consists in

jointly estimating the hidden state and the (possibly time-varying)

parameters associated to the parametric shape of the unknown den-

sity. However, the main difficulty is the choice of the parametric

shape and/or the number of component if a mixture is considered.

Indeed, it is theoretically desirable to consider models that are not

limited to finite parametrizations. This can be overcome by address-

ing the uncertainty about the parametric form of the unknown den-
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sity with a nonparametric prior. The Dirichlet process (DP) is one of

the most prominent random probability measures due to its richness,

computational ease, and interpretability. It can be used to model the

uncertainty about the functional form of the distribution for param-

eters in a model. The hierarchical models in which the DP is used

as a prior over the distribution of the parameters are referred to as

the Dirichlet process mixture (DPM) models. DPM can easily be

defined as an extension of a parametric mixture model without the

need to do model selection for determining the number of compo-

nents to be used.

Several approaches for filtering with nonparametric density esti-

mation using DPMs have been recently proposed [8–10]. In [8], the

authors derive a sequential Monte-Carlo (SMC) algorithm in order

to jointly estimate the hidden state and the unknown (static) density

in linear dynamical systems by assuming the unknown density to be

an infinite mixtures of Gaussians. In [9], the authors extend the algo-

rithm to nonlinear dynamical systems. Finally in [10], we propose

to use a DPM of Cauchy distributions, unlike the Gaussian choice

in the two previous works, in order to be more robust to impulsive

noise. Furthermore, we propose a novel sampling step within the

SMC algorithm in order to take into account the observations in the

sampling step of the parameters of the DPM. In this paper, we pro-

pose to extend this methodology in order to deal with time-varying

measurement noise density.

This paper is organized as follows: in section 2 we briefly re-

view Bayesian nonparametric density estimation using DPMs and

we describe the time-varying DPM (TVDPM) model. In section 3,

we introduce the dynamic model as well as the measurement noise

modeling. Section 4 is devoted to the description of the proposed

particle filter (PF). Simulation results are presented in section 5 and

conclusions are drawn through section 6.

2. BAYESIAN NONPARAMETRIC DENSITY ESTIMATION

USING TVDPMS

Consider a set of observations {zt}
T

t=1 statistically distributed ac-

cording to an unknown pdf Ft such as zt ∼ Ft(.), t = 1, ..., T . We

are interested in estimating the pdf Ft(.) based on the sequence of

observations {zt}
T

t=1. To this purpose, we consider the following

nonparametric model

Ft(.) =

∫

Θ

f(.|θt)dGt(θt), t = 1, ..., T (1)

where θt ∈ Θ is called the latent variable or cluster, f(.|θt) is the

mixed pdf and Gt is the mixing distribution. Under a Bayesian

framework, Gt is assumed to be a Random Probability Measure

(RPM) distributed according to a prior distribution. The DPM model
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is based on DP prior for the mixing distribution. Such a model as-

sumes that the RPM Gt is distributed according to a DP

Gt ∼ DP (G0, α) (2)

where G0 is a base probability measure and α > 0 is the concentra-

tion parameter. For a review of DP, see [11]. The DPM defines the

following hierarchical Bayesian structure:

Gt|G0, α ∼ DP (G0, α), t = 1, ..., T
θt|Gt ∼ Gt, t = 1, ..., T
zt|θt ∼ f(.|θt), t = 1, ..., T

(3)

It should be noted that, due to the discreteness property of the DP

[12], there is a strictly positive probability of multiple latent vari-

ables θt taking identical values. Let U1, ..., Ur be the unique values

or clusters among θ1, ..., θT .

We can also obtain a DPM model as the limit of the following finite

Dirichlet-multinomial model as p 7−→ ∞ [13]:

U1, ..., Up|G0 ∼ G0, t = 1, ..., T
π1, ..., πp|α ∼ D(αp , ...,

α
p
), t = 1, ..., T

ct|π1:p ∼Multinomial(π1:p), t = 1, ..., T
zt|ct, U1:p ∼ f(.|Uct ), t = 1, ..., T

(4)

where ct ∈ {1, ..., p} is the allocation variable that picks out for

each θt the unique value Uk such that θt = Uct . As p 7−→ ∞,

the predictive distribution of the allocation variables, computed by

integrating over the vector π1:p, follows a Polya urn scheme [14]:

{
p(ct = k|c1:t−1) =

mk

α+t−1
, ∀k ∈ X(c1:t−1)

p(ct /∈ X(c1:t−1)|c1:t−1) =
α

α+t−1

(5)

where X(c1:t−1) denotes the set of unique values in c1:t−1 and

mk(c1:t−1) =
∑t−1

j=1 δcj (k) is the number of allocation variables

in c1:t−1 taking the value k.

The DPM is a widely used model for density estimation and is

among the most successful ways of modeling multimodal distribu-

tions in a nonparametric Bayesian framework. However, when the

available data have a time-varying distribution, such model becomes

inadequate. In this paper, we will use a class of TVDPMs, proposed

by Caron et al [15], which ensures that at each time step the RPM

Gt follows a DPM model. This model allows us to move both the

cluster parameters and their weights. Furthermore, it relies on a sim-

ple and intuitive birth/death procedure. The main idea behind this

model consists at each time step t to delete randomly a subset of the

allocations variables sampled at time k < t and which had survived

the previous t − 1 deletion steps. In fact, each allocation variable is

deleted with probability 1 − ρ, where 0 ≤ ρ ≤ 1. Hence, an allo-

cation variable survives according to a Bernoulli distribution and the

sum mk,t is distributed according to a Binomial distribution:

mk,t ∼ B(mk,t−1 + δct−1(k), ρ)∀k ∈ X(mt−1) ∪ {ct−1} (6)

where mt−1 = {mk,t−1|k ∈ N}.
After the deletion step, the new allocation variable ct is sampled

according to a standard Polya urn scheme based on the surviving

allocation variables p(ct|mt):

{
p(ct = k|mt) =

mk,t

α+
∑

j∈X(mt)
mj,t

, ∀k ∈ X(mt)

p(ct /∈ X(mt)|mt) =
α

α+
∑

j∈X(mt)
mj,t

(7)

To obtain a first order stationary DPM process, we also need to en-

sure that at each time t the clusters Uk,t, ∀k ∈ X(mt) are i.i.d

from the base distribution G0. This can be easily achieved if ∀k ∈
X(mt) ∪ {ct}

Uk,t ∼

{
p(Uk,t|Uk,t−1) if k ∈ X(mt)
G0 otherwise

(8)

where G0 is the invariant distribution of the transition kernel

∫
G0(Uk,t−1)p(Uk,t|Uk,t−1)dUk,t−1 = G0(Uk,t) (9)

Such transition kernel can be constructed using standard approaches

from the time series literature [16].

Finally, we can summarize the TVDPM by the following hierarchi-

cal Bayesian structure for t = 1, ..., T :

mk,t ∼ B(mk,t−1 + δct−1(k), ρ) ∀k ∈ X(mt−1) ∪ {ct−1}
ct|mt ∼ p(ct|mt)

Uk,t ∼

{
p(Uk,t|Uk,t−1) if k ∈ X(mt)
G0 otherwise

∀k ∈ X(mt) ∪ {ct}

zt|Uct,t ∼ f(.|Uct,t)
(10)

3. TVDPM NOISE MODEL

Consider the following generic nonlinear dynamic system given in

state-space form:

{
xt+1 = gt(xt, wt)
yt = ht(xt, vt)

(11)

where t is the time index, xt is the state variable, yt is the mea-

surement, gt and ht are respectively the state and the observation

functions, and wt and vt are mutually independent i.i.d noise pro-

cesses. Such nonlinear dynamic systems are widely used to model

systems across many areas in signal processing such as target track-

ing, communications, etc. Here, we assume that the distribution of

the process noise is known. The measurement noise is assumed to be

impulsive, skewed, multimodal and time-varying with an unknown

distribution vt ∼ Ft.

In order to introduce temporal dependencies between the dis-

tributions Ft and Ft−1, we assume that the measurement noise vt
is distributed according to the TVDPM model defined by (10) with

a heavy-tailed kernel that is the Cauchy distribution. The mixed

pdf f(.|Ut) is thus assumed to be a Cauchy distribution with lo-

cation parameter mt and scale parameter et denoted C(mt, et).
We denote Ut = {mt, et} the cluster giving at each time index

t the location and the scale of the mixed pdf. The base distribu-

tion G0 is assumed to be a normal inverse Wishart distribution

NIW(µ0, κ0, ν0,Λ0). Instead of fixing ρ, we assume that it

is time-varying with p(ρt|ρt−1) = Beta(aρ, aρ
1−ρt−1

ρt−1
), where

aρ ∈]0,∞]. We denote Φ = {α, µ0, κ0, ν0,Λ0, aρ} the set of

hyperparameters which are assumed to be pre-specified and fixed.

4. PARTICLE FILTER FOR SEQUENTIAL STATE AND

NOISE DENSITY ESTIMATION

In this paper, our main goal is to jointly estimate the state xt

as well as the time-varying measurement noise distribution Ft

at each time t conditional on the observations y1:t. The vari-

ables of interest are the hidden state xt, the allocation variables

ct, the vector mt, the clusters Uk∈X(mt)∪{ct},t and the hyper-

parameter ρt. These variables may be written as a single vector
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zt = [xt, ct,mt, Uk∈X(mt)∪{ct},t, ρt]. Within a Bayesian frame-

work, we need to compute the joint posterior pdf p(zt|y1:t,Φ). This

pdf is analytically intractable. Therefore, we propose to use SMC

methods in order to find an estimate of the required posterior pdf.

The set of hyperparameters Φ is assumed to be known, therefore

it is omitted in the following. The posterior pdf p(zt|y1:t) will be

approximated by a PF:

p(zt|y1:t) ≃
N∑

i=1

ω
(i)
t δ

z
(i)
t

(zt) (12)

where δ is the Dirac delta function, z
(i)
t is the vector of the differ-

ent variables of interest particles drawn from the importance density

q(zt|z0:t−1, y1:t) and ω
(i)
t is the normalized importance weight aso-

ciated to the ith particle.

Once the posterior density function of interest is identified, the

remaining task is the simulation of the differents particles from the

importance density. The choice of the importance density is crucial

because it determines the efficiency as well as the complexity of the

PF. The considered importance density can be decomposed as:

q(zt|z0:t−1, y1:t) = q(xt, ct, Uk=ct,t|x0:t−1,m1:t, U1:t−1, y1:t)
×q(Uk∈X(mt),t|U1:t−1,m1:t)q(ρt|ρ1:t−1,m1:t)
×q(mt|m1:t−1, c1:t−1, ρ1:t−1)

(13)

The particles of the vector mt are sampled using the transition den-

sity p(mt|mt−1, ct−1, ρt−1):

m̃
(i)
k,t∼B(m

(i)
k,t−1+δ

c
(i)
t−1

(k), ρ
(i)
t−1),∀k ∈ X(m

(i)
t−1)∪{c

(i)
t−1} (14)

For the hyperparameter ρt, we use the optimal importance density

p(ρt|ρt−1, Nt, Nt−1) where Nt =
∑

k∈X(mt)
mk,t. We have

Nt ∼ B(Nt−1 + 1, ρt) (15)

Since the beta distribution is a conjugate prior for a binomial likeli-

hood, the optimal importance density is given:

p(ρt|ρt−1, Nt, Nt−1)

∝ Beta(ρt; aρ, aρ
1−ρt−1

ρt−1
)B(Nt−1 + 1, ρt)

= Beta(ρt; aρ +Nt, aρ
1−ρt−1

ρt−1
+Nt−1 + 1−Nt)

(16)

We note that the current observation yt provides only information on

the cluster Uk=ct,t. This is why, the set of surviving clusters such

as k 6= ct are sampled using the transition density p(Uk,t|Uk,t−1).
However, for the cluster Uk=ct,t as well as the state xt and the allo-

cation variable ct, we consider the optimal importance density in the

sense of minimizing the variance of the importance weights [17]. In

our context, it is expressed as

q(xt, ct, Uk,t|x0:t−1,m1:t, U1:t−1, y1:t)
= p(xt, ct, Uk,t|x0:t−1,mt, U1:t−1, yt)

(17)

This importance density is interesting because it incorporates infor-

mation on the current observation. Consequently, the particles tend

to cluster in regions of high probability mass of the posterior pdf.

The sampling of x̃
(i)
t , c̃

(i)
t and Ũ

(i)
k,t from (17) requires the analytical

expression of the optimal importance density. However, this pdf is

analytically intractable. Using Bayes’theorem, the considered im-

portance density can be written as

p(xt, ct, Uk,t|x0:t−1,mt, U1:t−1, yt)

=
p(yt|xt,ct,Uk,t)p(xt|ct,Uk,t,xt−1)p(Uk,t|Uk,t−1,ct)p(ct|mt)

p(yt|x0:t−1,mt, U1:t−1)
∝ p(yt|xt,ct,Uk,t)p(xt|ct,Uk,t,xt−1)p(Uk,t|Uk,t−1,ct)p(ct|mt)

(18)

Thus, an approximation of the optimal importance density can

be obtained using Monte Carlo method and importance sampling.

For this purpose, we consider a set of NIS auxiliary particles{
(x̆

(j)
t,i , c̆

(j)
t,i , Ŭ

(j)
k,t,i)

}NIS

j=1
where state particles x̆

(j)
t,i are sampled

using the transition density p(xt|x
(i)
0:t−1):

x̆
(j)
t,i ∼ p(xt|x

(i)
t−1) (19)

and the allocation variable particles c̆
(j)
t,i are sampled using a standard

Polya urn scheme based on the surviving allocation variables





p(c̆
(j)
t,i = k|m̃(i)

t ) =
m̃

(i)
k,t

α+
∑

l∈X(m̃
(i)
t

)
m̃

(i)
l,t

, ∀k ∈ X(m̃
(i)
t )

p(c̆
(j)
t,i /∈ X(m̃

(i)
t )|m̃

(i)
t ) = α

α+
∑

l∈X(m̃
(i)
t

)
m̃

(i)
l,t

(20)

The cluster particles Ŭ
(j)
k,t,i are sampled as follows

{
p(Uk,t|Uk,t−1), if c̆

(j)
t,i ∈ X(m̃

(i)
t )

G0, otherwise
(21)

Using this set of particles, the optimal importance density can be

approximated by the following empirical distribution:

p(xt, ct, Uk,t|x
(i)
0:t−1, m̃

(i)
t , U

(i)
1:t−1, yt)

≃
∑NIS

j=1

ω̆
(j)
t,i

Sω̆
δ
x̆
(j)
t,i

,c̆
(j)
t,i

,Ŭ
(j)
k,t,i

(xt, ct, Uk,t)
(22)

where ω̆
(j)
t,i is the unnormalized weight associated to the jth group

of particles (x̆
(j)
t,i , c̆

(j)
t,i , Ŭ

(j)
k,t,i) defined as

ω̆
(j)
t,i = p(yt|x̆

(j)
t,i , c̆

(j)
t,i , Ŭ

(j)
k,t,i) (23)

and Sω̆ is the sum of unnormalized weights Sω̆ =
∑NIS

j=1 ω̆
(j)
t,i . In

order to sample the ith group of particles (x̃
(i)
t , c̃

(i)
t , Ũ

(i)
k,t) from the

approximate optimal importance density given by (22), we just need

to pick one particles group from the set
{
(x̆

(j)
t,i , c̆

(j)
t,i , Ŭ

(j)
k,t,i)

}NIS

j=1

using weights
{
ω̆

(j)
t,i

}NIS

j=1
as probabilities of selection. This can be

done as follows:

J ∼Multinomial

(
ω̆

(1)
t,i

Sω̆

,
ω̆

(2)
t,i

Sω̆

, ...,
ω̆

(NIS)
t,i

Sω̆

)
(24)

Thus, the ith group of particles (x̃
(i)
t , c̃

(i)
t , Ũ

(i)
k,t) is given by

(
x̃
(i)
t , c̃

(i)
t , Ũ

(i)
k,t

)
=
(
x̆
(j=J)
t,i , c̆

(j=J)
t,i , Ŭ

(j=J)
k,t,i

)
(25)

Using these importance densities, the importance weights of the

main PF are updated according to the following relation:

ω
(i)
t ∝ ω

(i)
t−1

p(yt|x
(i)
0:t−1, m̃

(i)
t , U

(i)
k,t−1)p(ρ̃

(i)
t |ρ

(i)
t−1)

q(ρ̃
(i)
t |ρ

(i)
t−1, m̃

(i)
t ,m

(i)
t−1, c

(i)
t−1)

(26)

where p(yt|x
(i)
0:t−1, m̃

(i)
t , U

(i)
k,t−1) can be approximated by Monte

Carlo method using the weighted set of particles of the importance

sampling strategy. In doing so, this pdf is given by the sum of un-

normalized weights Sω̆.

The proposed PF for joint state and time-varying noise density

estimation denoted by PF-JSTVNDE is summarized in algorithm 1.
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Initialization

for t = 1 to T do

for i = 1 to N do

∀k ∈ X(m
(i)
t−1) ∪ {c

(i)
t−1}, sample m̃

(i)
k,t

using (14) ;

Sample ρ̃
(i)
t using (16);

for j = 1 to NIS do

Sample x̆
(j)
t,i using (19), c̆

(j)
t,i using (20) and

Ŭ
(j)
k,t,i

using (21);

Compute weights ω̆
(j)
t,i

using (23) ;

end

Compute: Sω̆ =
∑NIS

j=1 ω̆
(j)
t,i

;

Normalize weights: ω̆
(j)
t,i = ω̆

(j)
t,i /Sω̆ ;

Select a particle indice J ∈ {1, 2, ...,NIS} according

to weights
{
ω̆
(j)
t,i

}NIS

j=1
using (24);

Set x̃
(i)
t = x̆

(J)
t,i , c̃

(i)
t = c̆

(J)
t,i and Ũ

(i)
k,t

= Ŭ
(J)
k,t,i

;

For k ∈ X(m̃
(i)
t ) ∩ c̃

(i)
t sample

Ũ
(i)
k,t

∼ p(Uk,t|U
(i)
k,t−1) ;

Update importance weights ω
(i)
t using (26) ;

end

Normalize importance weights

ω
(i)
t = ω

(i)
t /

∑N
j=1 ω

(i)
t , i = 1, ...,N ;

if Neff < N
2

then Resampling step;

end

Algorithm 1: PF-JSTVNDE algorithm

5. SIMULATIONS

The performance of the proposed method is studied considering the

following benchmark scalar nonlinear time series model [18–20]:





xt+1 = 0.5xt + 25
xt

1 + x2
t

+ 8 cos(1.2(t + 1)) +wt

yt =
x2
t

20
+ vt

This model has been simulated with the following parameters: x0 ∼
N (0, 10) and wt ∼ N (0, 1). The measurement noise vt is assumed

to be time-varying and generated for t=1,...,1000 from a sequence of

mixtures:
{
vt ∼ 0.4S1.2(0.5, 0.7,−4) + 0.6S1.5(0, 0.5, 0) t = 1, ..., 300
vt ∼ S1.5(0, 0.5, 0) t = 301, ..., 600

where Sα(β, γ, µ) denotes the α-stable distribution with character-

istic exponent 0 < α < 2, dispersion parameter γ > 0, location

parameter µ and skewness parameter β ∈ [−1; 1]. One difficulty is

that they have no closed-form expressions for their pdf. They can be

most conveniently described by their characteristic function [5]:

ϕ(t) =

{
exp

(

iµt− γα |t|α
[

1− iβ sgn(t) tan απ
2

])

, α 6= 1
exp

(

iµt− γ |t|α
[

1 + iβ sgn(t) 2
π
log |t|

])

, α = 1

The hyperparameters of the base distribution µ0,κ0,ν0 and Λ0 are

respectively set to 0, 0.01, 5 and 6. We fixed the scale parameter of

the DPM α to 3 and aρ to 1000. The proposed PF has been imple-

mented with N = 200 particles and NIS = 100 auxiliary particles.

Results are illustrated in the different plots of Fig. 1 and Fig. 2. Fig. 1

shows the estimated signal as well as the true and the observed ones.

We also plot the measurement noise signal and the estimation error

between the true and the estimated signals. From these plots, it can

be seen that despite the fact that the noise is important, the state xt is

correctly estimated. Fig. 2 depicts the estimated measurement noise

density as well as the true one at different time steps. We can ob-

serve that our algorithm is able to capture the evolution of the noise

density over time.

0 100 200 300 400 500 600
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100
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Fig. 1. Top picture: Measurement noise signal. Middle picture:

True, estimated and observed signals. Bottom picture: Error be-

tween the true and the estimated states.
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Fig. 2. True and estimated noise densities at different time steps.

6. CONCLUSIONS

In this paper, a novel method for the online estimation of the state

and the time-varying measurement noise density is presented. The

measurement noise considered here is impulsive and multimodal.

The proposed approach relies on the introduction of a flexible

Bayesian nonparametric model based on Dirichlet Process Mixture

to model the measurement noise density as an infinite mixture of

Cauchy distributions. A particle filter based on efficient importance

densities is then implemented to perform the joint estimation of

the state and the unknown noise density. The efficiency and the

robustness of the proposed scheme are illustrated through several

simulations. In future works, we plan to make inference on the

hyperparameters of the base distribution.
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