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ABSTRACT

In this paper, a novel technique is proposed that recognizes
speech on a server but all private knowledge is processed on
the client. Private knowledge could be address book entries,
calendar entries or medical patient data.

The technique combines the advantage of a powerful
server with almost unlimited memory and the advantage using
locally available user dependent knowledge. A dynamic lan-
guage model is used to recognize speech with the help of con-
tent dependent acoustic fillers on a server. The result is then
recognized including user dependent knowledge on a client,
e.g., a smart phone. We achieved a word error rate reduction
of 17% on the Wall Street Journal Corpus.

Index Terms— Dynamic Language Model, Acoustic
Filler, Client-Server Speech Recognition, Data Privacy.

1. INTRODUCTION

It would be beneficial for various speech applications to use
local data such as address book entries, calendar entries or
other private data. These private data are often not available
on a server. This may be because of legal reasons, e.g., for
medical patient data. Smaragdis et al. proposed a framework
for secure speech recognition [1]. Using local data can also
reduce the required server storage capacity and its software
complexity for high demand speech applications. Recogni-
tion on an embedded device is often limited due to restricted
computational power and memory.

We propose a novel technique that combines client and
server based speech recognition through dynamic language
models and acoustic fillers. There is no need to synchronize
user dependent private data to achieve accurate speech recog-
nition. All private data is recognized on the client. It enhances
the recognition hypotheses from the server with suitable lo-
cally available data. This allows the use of models that are
highly optimized for the use on embedded devices on the one
hand. On the other hand, the server recognizer can use precise
acoustic models and language models estimated on the crowd.
Our novel technique can take advantage of private data that is
only locally available on the client.

Fig. 1. Speech recognition hypotheses from a server are en-
hanced on the smart phone with user knowledge. The recog-
nizers are connected through a Wide Area Network (WAN).

Our novel speech recognition technique uses several lan-
guage models, simultaneously. Murveit et al. described a
technique that uses different levels of detail between recog-
nition passes [2]. Multiple pass search strategies were de-
scribed in detail by Schwartz et al [3]. We combine statistical
language models and grammars. A combining of linguistic
and statistical knowledge was proposed by Moore et al [4].
Bruganara et al [5] proposed hierarchical language models.
Linking several local models together according to a general
one was proposed by Nasr et al [6]. The idea was further
pursued using weighted transducers, e.g., by Schalkwyk et al
[7] or Mohri [8]. An on–the–fly transducer nesting was pro-
posed by Georges et al [9]. The technique described in this
paper combines different language models in multiple passes
on different devices. The used dynamic language model is
described in Section 2. Our technique is not related to dis-
tributed language models for estimating N -grams on a grid
computer using a wide Storage–Area–Network as described
by Mnih et al [10] and Brants et al [11].
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Figure 1 gives an overview of the novel technique. The
speech signal is captured, without loss of generality, on a
smart phone and passed through a wide area network to a
server. A generalized language model is used for recognition
along with an acoustic model and acoustic fillers. This is de-
scribed in detail in Section 3. The recognition hypotheses are
passed to the smart phone. The hypotheses were enhanced
on the smart phone with user grammars and assembled to a
weighted finite state transducer and finally recognized as de-
scribed in Section 4. We evaluated the technique on the Wall
Street Journal Corpus [12] which is summarized in Section 5.
A word error reduction of 17% has shown that a significant
accuracy improvement can be achieved. We observed a de-
lay of 15% compared to real time speech recognition. This
delay can be used to provide preliminary recognition results.
The client is typically equipped with embedded processors
and advances battery-saving modes. Our novel technique can
take advance of these modes because not the full computa-
tional power is required over the entire processing.

2. DYNAMIC LANGUAGE MODEL

There are various language models used in our proposed tech-
nique which were dynamically combined on multiple devices.
An overview of the language models is given in Figure 2.

Fig. 2. The standard language model is divided into an user
dependent grammar and a generalized language model. Both
were represented as weighted finite state transducers.

The starting point is a corpus C for language model train-
ing. We also define K sets of user-dependent word sequences
Sk ⊂ W ∗ with k ≤ K over vocabulary W . User dependent
word sequences could be terms from a calendar, proper names
from an address book or credit card numbers, etc. Let SK be
the set of all user dependent word sequences:

SK =

K⋃
k

Sk ⊆W ∗.

Each occurrence of a term from Sk in C is substituted with a
marker tk ∈ T with |T | = K and T ∩W = ∅. The result is
a generalized corpus C′. We used the transducer replacement
operator R proposed by [13], which is described in [9] for
dynamic language model estimation. Regular expressions can
be used, too. The definition of R is given as:

R : W ∗ → ((W ∪ T )∗\SK)∗.

A generalized N -gram Markov language model is then esti-
mated on C′. The probability of a word sequence w is given
by the sequence computed by R(w). The generalized lan-
guage model can be formulated as:

P (R(w)) =
|R(w)|∏

i

P (R(w)i|R(w)i−N+1:i−1)·{
Pk(wm:n) ∃m,n : R(wm:n) = R(w)i = tk
1 else.

Pk is a conditional probability for a replaced word sequence
by R where the probability is 1 if no word was replaced. The
model is normalized if each word sequence in SK is uniquely
associated with one marker. Let P (x|w) be the acoustic
model. The most probable word sequence ŵ is given by a se-
quence of speech features x [14], [15]. Here, the fundamental
formula of speech recognition becomes:

ŵ = argmax
w∈W∗

P (x|w)P (R(w)).

The server uses the generalized language model where
each Pk is replaced on–the–fly with a corresponding acoustic
filler as described in Section 3. The acoustic fillers are based
on phoneme loop models estimated on the replaced word se-
quences. There are various filler alternatives described in the
literature. Asadi et al. proposed fillers that where used to ob-
tain phonetic transcriptions for modelling out of vocabulary
words [16]. Jiang et al [17] described fillers based on sub–
word features for a vocabulary–independent word confidence
measure. Fillers based on word fragments were proposed by
Klakow et al [18] and various models were described by Bazzi
et al [19]. We analysed the scope for improvement with oracle
fillers as described in Section 5.

The server recognition result is used along with user
grammars on the client, e.g., a smart phone to assemble an
user dependent transducer. This transducer is recognized on
the client as described in Section 4.

3. RECOGNITION ON THE SERVER

The speech recognizer on the server uses a generalized lan-
guage model where user dependent word sequences were rec-
ognized with acoustic fillers. We use weighted finite state
transducers, so that an on–the–fly nesting technique could be
used to embed the acoustical filler models.
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The generalized N -gram Markov language model can be
represented by a weighted automaton G1. The relations be-
tween phoneme sequences P and words W is described by
a lexicon transducer L ⊆ (P×W )∗. Further on, the context
dependency between phonemes is given by the transducer C.
A static search network can be assembled as follows:

M ′1 = min(det(C ◦ L ◦G1)),

where ◦ denote the composition operator [20]. min, det
denote the transducer operator for minimization and deter-
minization [21]. Finally, M ′1 is composed on–the–fly with
a hidden Markov model H along with the cross-word compu-
tation. This was initially described by Hori et al [22], [23] and
further improved by McDonough et al [24] and Allaucen et al
[25], [26]. The probability for a phoneme sequence given a
sequence of speech features can be computed [27] using a to-
ken passing time synchronous Viterbi beam search [28]. Each
acoustic filler is represented as a weighted transducer, sharing
the same set of hidden states. There is no need to extend the
acoustic model. The transducer replacing operator [27] can
be used to nest the filler model into the M ′1 transducer. We
nest the filler on–the–fly [9] each time when a marker from
the generalized language model was reached.

The recognition result is an N -best list of sentence hy-
potheses [3]. The acoustic filler location is tagged and will
be later used to include user dependent knowledge. Using N -
best sentence hypotheses ensures backwards compatibility for
other speech applications using the same server infrastructure.
Alternatively, a lattice could be passed to the client.

4. RECOGNITION ON THE CLIENT

The smart phone receives recognition hypotheses from the
server. The user dependent language portion is marked. This
could be proper names, dates or other private data. The
user data is locally available as grammar, e.g., an address
book, calendar or medical recordings. These data are used
for speech recognition on the client, e.g., a smart phone.

In this paper, the received N -best sentence hypotheses
from the server were summarized in one grammar G2, where
each sentence ends up in one grammar rule. This is compara-
ble to an output voting error reduction system [29] where dif-
ferent hypotheses from various recognizers were combined to
improve the overall accuracy. Schwenk et al [30] proposed to
include language model weights which may also be used for
the proposed technique in this paper. Alternatively, a word
lattice could be delivered by the server. Each marker in G2

points to an user grammar. Similar to the recognition on the
server, a transducer M ′2 can be assembled as:

M ′2 = min(det(C ◦ L ◦G2)).

The phoneme dependency model is C and L is the lexi-
con transducer. M ′2 is composed on–the–fly with a hidden

Markov model H along with the cross-word computation. A
token passing time synchronous Viterbi beam search is used
similar to the server recognition system. In addition, his-
togram pruning [14] is applied to fulfil the embedded memory
requirement.

5. EVALUATION

The proposed system is evaluated using the Wall Street Jour-
nal Corpus [12]. We use the same decoder set-up on the
server and on the client for comparable reasons. An integer
value based acoustic model evaluation was used. We did not
take advantage of any acoustical adaptation techniques such
as MLLR etc. The SRI Language Model tool–kit [31] was
used to estimate the 5k word language models with Kneser-
Ney discounting [32]. We prepared the Wall Street Journal
Corpus C for language model training in a way that it be-
comes comparable to real world applications.

Table 1. Used grammar for evaluation in Backus–Naur Form

〈DAY〉 := ‘Monday’ | ‘Tuesday’ | ...

〈MONTH〉 := ‘January’ | ‘February’ | ...

〈NUM〉 ::= 〈num〉 [‘.’ 〈num〉][‘,’ 〈num〉]

〈num〉 ::= ‘one’ 〈num〉 | ‘two’ 〈num〉 | ... | 〈empty〉

〈MONETARY〉 ::= 〈NUM〉‘dollar’|〈NUM〉‘cent’|...

〈PERCENT〉 ::= 〈NUM〉 ‘percent’

〈ABBREVIATION〉 ::= 〈Letter〉 | ‘SVOX’ | ...

〈Letter〉 ::= ‘A.’ 〈Letter〉 | ... | 〈empty〉

Imagine a short message dictation application where the
local available address book, the music title collection and the
calendar should be included in the recognition. Here, the user
dependent knowledge S is a subset of all weekdays, names of
months, various number terms and abbreviations according to
Table 1. We exclude all user dependent knowledge S′ ⊂ S
from the corpus that occur in the set of test sentences to reduce
the coverage of S′ from 31% down to 7%:

C′ = {w ∈ C|@m,n : wm:n ∈ S′}.

This coverage seems realistic for real world applications
when we analyse N -gram cut-off data. C′ is used to esti-
mate the language models for the server only system. Each
term of S is replaced in the corpus C′ with a corresponding
marker symbol from T . We used the grammar in Table 1 and
the transducer replacement operator R to build C′′ as follows:

C′′ = {w ∈ ((W ∪ T )∗\S)∗|∃w′ ∈ C′ : w = R(w′)}.
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The generalized corpus C′′ is used to estimate the dynamic
language model. This language model is used by the server
along with the acoustic fillers. Those fillers are based on
phoneme loop models. Every substituted word sequence from
C′′ is used to estimate the 1-gram phoneme loop filler.

Initially, we analyzed the impact of the number of N -
best hypotheses which were passed from the server (1st de-
coder) to the client (2nd decoder). We expected that this
influences the recognition accuracy significantly. This has
been confirmed by the experiments. Figure 3 shows the influ-
ence using 3-gram dynamic language models. We examined

Fig. 3. The minimal word error rate was achieved when the
2nd decoder was recognizing on 5-best hypotheses.

this behaviour also for the 2-gram and 4-gram models where
we observed similar behaviour. A minimal word error rate
along with tenable recognition time for the 2nd decoder was
achieved using 5-best hypotheses. This experiment is denoted
with an ”x” in Figure 3. The pruning behavior on the 2nd de-
coder has a significant influence on the recognition time but
nearly no influence on the accuracy for small N .

In this paper, phoneme loop fillers were used. Even when
each model was estimated on representative data, the differ-
ence between each filler is minimal. The accuracy can be fur-
ther improved using fillers which are strongly user adapted.
We used oracle full word fillers estimated on the test data
in the following experiment. Figure 4 illustrates the poten-
tial of improvement for dynamic 2-gram language models
on representative hardware. The oracle filler outperforms
the proposed phoneme loop model as expected. Further, we
compared the performance with a grammar 2-gram language
model where user dependent grammars were nested during
decoding. This is only possible when the user data is avail-
able on the server. Our novel technique could achieve nearly
the same recognition accuracy with user dependent fillers al-
though it took a certain delay. We observed similar behaviour
using the 3 and 4-gram language model set-up.

Finally, we compared our novel system with server only
speech recognition. A faster recognition was achieved with 4-
gram language models whereas no further accuracy improve-
ment was observable. In summary, the recognition accuracy
of the novel technique outperforms the server only system as
summarized in Figure 5. No private data has to be synchro-

Fig. 4. The oracle filler gives an impression of the potential of
improvement when user adapted fillers can be used compared
to the proposed phoneme loop fillers.

nized with the server. All private data such as the address
book, calendar or medical data remains on the client. The
latency of the proposed technique requires a user feedback
mechanism for certain applications. Here, the latency was
on average 15% of the real time. The processor can stay in
a battery-saving mode for the most time. A word error rate
reduction of 17% was achieved for the 3-gram dynamic lan-
guage model set-up.

Fig. 5. The novel client-server speech recognition technique
is beneficial if a short delay is acceptable.

6. SUMMARY

We propose a technique for speech recognition on a client
and server where no private data has to be available on the
server. Private date could be an address book, a private calen-
dar or some medical patient data. A dynamic language model
is used on the server along with acoustic fillers. The recogni-
tion result is then combined with user dependent knowledge
on the client, e.g., on a smart phone.

We have shown that the proposed technique can improve
speech recognition on the Wall Street Journal corpus. An av-
erage latency of 15% was observed compared to real time
recognition and, in the same time, a word error rate reduc-
tion of 17% was achieved.

3298



7. REFERENCES

[1] P. Smaragdis and M. V. S. Shashanka, “A framework for secure
speech recognition.” IEEE Transactions on Audio, Speech &
Language Processing, vol. 15, no. 4, pp. 1404–1413, 2007.

[2] H. Murveit, J. Butzberger, V. Digalakis, and M. Weintraub,
“Large-vocabulary dictation using SRI’s DECIPHER speech
recognition system: Progressive search techniques,” in Pro-
ceedings of ICASSP, 1993.

[3] R. Schwartz, L. Nguyen, and J. Makhoul, “Multiple-pass
search strategies,” in Automatic Speech and Speaker Recog-
nition, ser. The Kluwer International Series in Engineering and
Computer Science, C.-H. Lee, F. Soong, and K. Paliwal, Eds.
Springer US, 1996, vol. 355, pp. 429–456.

[4] R. Moore, D. Appelt, J. Dowding, M. Gawron, and D. Moran,
“Combining linguistic and statistical knowledge sources in nat-
ural language processing for atis,” in ARPA Spoken Language
Technology Workshop, 1995.

[5] F. Brugnara and M. Federico, “Dynamic language models for
interactive speech applications.” in EUROSPEECH, G. Kokki-
nakis, N. Fakotakis, and E. Dermatas, Eds. ISCA, 1997.

[6] A. Nasr, Y. Esteve, F. Bechet, T. Spriet, and R. D. Mori, “A
language model combining n-grams and stochastic finite au-
tomata,” in Proceedings of Eurospeech, 1999, pp. 2175–2178.

[7] J. Schalkwyk, I. L. Hetherington, and E. Story, “Speech recog-
nition with dynamic grammars using finite-state transducers,”
in Processing of INTERSPEECH, 2003.

[8] M. Mohri, “Local grammar algorithms,” in Inquiries into
Words, Constraints, and Contexts., A. Arppe, L. Carlson,
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