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ABSTRACT
This paper presents a subspace-based acoustic factorization

framework to transform-based adaptation in speech recognition.
In the proposed method, adaptation transforms are projected onto
factor-dependent low-rank subspaces in a way that decouples the
combined extrinsic factors affecting the speech signals. Usually,
mismatch between the observed speech and the acoustic models
is caused by multiple acoustic factors simultaneously, such as the
speaker and environment. Data-driven adaptation methods, such as
constrained MLLR, compensate for all sources of mismatch jointly.
In many scenarios, however, it is highly desirable to separate the
sources of mismatch in order to adapt to speaker and environment
variability independently. This adds flexibility to the model adapta-
tion framework. For example, a speaker transform obtained in one
environment can be reused when the same speaker is in different en-
vironments. Or, an environment transform obtained during training,
independently of speaker identities, can be applied to a speaker in
deployment. One way to achieve this factorization is to construct
each set of transforms such that they are orthogonal to each other,
so that any change in one acoustic factor keeps other factors in-
tact. The proposed subspace approach provides a straightforward
factor analysis framework while allows us to explicitly formulate
the independence among the estimated factor transforms. A series
of experiments performed on the Aurora 4 corpus validates our
approach.

Index Terms— acoustic factorization, speaker and environment
adaptation, orthogonal subspace projection, subspace transforms

1. INTRODUCTION

The performance of automatic speech recognition (ASR) systems
degrades as a result of acoustic mismatch caused by extrinsic vari-
abilities, such as speaker characteristics and environment differ-
ences. Assuming that a canonical model represents the intrinsic
phonetic variability of speech signals, model-based adaptation ap-
proaches in conventional recognizers introduce a set of transforms
to compensate the possible extrinsic variabilities. Because speech
signals are typically affected by multiple acoustic factors simul-
taneously, the combined effect of these factors is modeled by a
single transform. In many scenarios, however, the ability to adapt
the recognizer to each source of variability independently is highly
desirable. For example, consider a speaker in a range of different
environments. If it is possible, recycling the speaker transform ob-
tained in one noise condition even if the speaker’s environment later
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changes increases the system’s efficiency and reduces the required
adaptation data. Alternatively, an environment transform can be
applied across different users in the same environment.

The underlying concept of acoustic factorization which sepa-
rates such combined acoustic factors using a set of transforms was
first proposed by Gales in [1] and has been further developed us-
ing different methods [2–8]. Common to all of these methods is
the notion that the set of transforms are constructed such that each
transform is related to only one acoustic factor. In [3], two con-
strained maximum likelihood linear regression (CMLLR) transforms
were cascaded to represent the speaker and environment variability
respectively. They were jointly estimated in an iterative expectation-
maximization (EM) framework by alternating the target transform to
be optimized. In [5], each set of transforms were developed in dif-
ferent domains so that the environmental effects were compensated
in the model domain using MLLR transform while the speaker at-
tributes were adapted by CMLLR transform in the feature domain.
Combining entirely different adaptation strategies for speaker and
noise compensation was also proposed, in the hope that each set of
transforms models the specific factor independently to some extent.
In [9], Wang and Gales used vector Taylor series (VTS) for environ-
ment compensation and MLLR transforms for speaker adaptation.
More recently, the independence between factorized transforms was
enforced using an explicit mathematical constraint [8].

In this work, we present a subspace-based acoustic factorization
approach which provides a straightforward factor analysis frame-
work which allows us to explicitly formulate the independence
among the estimated subspace transforms. It is assumed that each
source of variability is contained within a corresponding low-rank
subspace so that the latent factor measured in the specified subspace
can quantify the decoupled speaker or environment characteristics.
This approach is motivated by joint factor analysis [10], where a
speaker- and channel-dependent supervector is decomposed into a
sum of two supervectors: a speaker supervector and a channel super-
vector. We efficiently integrate this concept onto eigenspace-based
MLLR (EMLLR) framework [11] so that the transforms estimated in
a complex acoustic environment are separated into different sets of
factor-dependent transforms. In contrast to JFA, the key idea of the
proposed approach is that the speaker and environment subspaces
are constructed to be orthogonal so that the factored transforms lying
on different subspaces are forced to be independent.

In Section 3.1, we review the concept of acoustic factorization.
In Section 3, the proposed subspace-based acoustic factorization
framework is presented with the subspace modeling approach based
on orthogonal subspace projection. Then, experiments and results
are presented and discussed in Section 4 with conclusions in Section
5.
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2. ACOUSTIC FACTORIZATION

The most common form of acoustic factorization framework as-
sumes that there are two acoustic factors, speaker characteristics s
and environment differences e, that simultaneously affect the speech
signal. In a conventional model adaptation framework, the canon-
ical model is adapted by the transform W (se) which models the
combined effect of s and e such as [7]

Λ(se) = F
(

Λc,W
(se)
)
, (1)

where Λ(se) is the adapted acoustic model for condition (s, e) and F
is a mapping function. Normally, the transform W (se) is estimated
using maximum likelihood (ML) criterion

W (se) = argmax
W

{
p
(
O(se)|Λc,W

)}
, (2)

whereO(se) is a sequence of feature vectors observed in the acoustic
condition (s, e).

To effectively deal with the complex acoustic environments, the
acoustic factorization framework proposes to factorize a single trans-
form W (se) into two components, each associated with one distinct
acoustic factor, i.e.,

W (se) = W (s) ×W (e), (3)

where W (s) and W (e) are the transforms associated with the fac-
tors s and e, respectively. This attribute offers additional flexibil-
ity for the models to be used in complex environments. For ex-
ample, consider a speaker s in a range of n acoustic conditions,
(s, e1), ..., (s, en). In a conventional model adaptation framework,
it is necessary to estimate a set of transformsW (se1), ...,W (sen) us-
ing the data O(se1), ..., O(sen) from each of these conditions. With
the factorization, however, only a single speaker transformW (s) and
a set of environment transforms W (e1), ...,W (en) are required, and
the speaker transform can be reused. The environment transforms
can be potentially be estimated during a training phase, or from dif-
ferent users’ utterances recorded in the same environment. There-
fore, theoretically, to achieve acoustic factorization, it is crucial to
keep factor transforms independent of each other. Most previous
work relies on using different forms of factored transforms and/or
EM-based optimization schemes to enforce this independence. In
recent work by Wang, an explicit constraint for the independence
between sets of transforms is formulated [8].

3. ACOUSTIC FACTORIZATION IN SUBSPACE

In this work, we propose a subspace-based approach for acoustic
factorization which provides straightforward factor analysis frame-
work and allows an explicit formulation for the independence of
each factor. It is assumed that each source of variability is con-
tained within a corresponding low-rank subspace and the latent fac-
tor measured in the specified subspace can represent the decoupled
speaker or environment characteristics. Theoretically, it is motivated
from joint factor analysis [10] model of speaker and channel vari-
ability in speech recognition system. Though an equivalent tech-
nique may naturally be created using the eigenvoice framework [12]
– both algorithms represent a speaker by a supervector that is com-
posed by mean vectors of the GMMs/HMMs, we efficiently extend
the concept to eigenspace-based MLLR (EMLLR) adaptation frame-
work [11]. EMLLR approaches have been successfully applied to
large vocabulary continuous speech recognition [11, 13].

3.1. Subspace Representation of Linear Transforms

Suppose we have a speech corpus consisting of various speakers in
many recording environments, and a set of transforms associated
with each speaker/environment condition that are estimated from
a canonical model using a linear transform such as MLLR or con-
strained MLLR [14]. The typical size of such matrices is d×(d+1),
where d represents the speech feature dimension. We assume that
each speaker/environment condition is indirectly represented by the
transformation matrix. To simplify the notation, the columns of this
transformation matrix are stacked into a single vector w with the di-
mension of D = d(d+ 1). The training corpus, then, is represented
by a matrix E whose columns are transform supervectors {wi} that
are estimated from the complete set of training data.

To begin with, let us assume that there is a single acoustic factor
that affects the speech signal, i.e., either speaker characteristics or
environment differences. In this case, the problem reduces to finding
a single low-rank subspace which can represent the corresponding
latent factor such as

w ≈ w̄ + Ux, (4)

where U is a D × r (r � D) matrix whose columns represent the
principle directions of variability in the data which can be estimated
by applying principle component analysis (PCA). The r-dimensional
vector x represents the factor-dependent parameter in the estimated
subspace, and w̄ the offset mean supervector of the entire training
population. If we consider the latent factor to be speaker variability,
then this becomes equivalent to the EMLLR approach in [11], where
the transform w in (4) indirectly represents a speaker and, any other
extrinsic variabilities, such as environment variability, are not con-
sidered.

In order to incorproate the impact of both environmental vari-
ability and speaker attributes, we assume that there are two distinct
sets of subspaces, each related to only one latent factor as follows:

w(se) ≈ w̄ + [U V]

[
x
y

]
s.t. U⊥V

= w̄ +

rs∑
i=1

uixi +

re∑
j=1

vjyj

= w̄ + w(s) + w(e),

(5)

where U (D × rs ) represents a low-rank matrix related to speaker
variability and V (D × re) relates to environment variability. The
subspace specific weight vectors, x and y, quantify the amount of
impact from speaker and environment, respectively. Thus, w(s) can
be regarded as the speaker factor transform and w(e) be the envi-
ronment factor transform. Notice that compared to (3), the proposed
subspace-based factorization regards the transformW (se) as the sum
of speaker- and environment-dependent transforms. This form of de-
composition is similar to that of the joint factor analysis [10] in the
speaker recognition field. In both frameworks, it is assumed that
each factor plays a different and independent role, i.e., the speaker
factors are constant for all speakers while the environment factors
can vary depending on the recording environment. Notice that, how-
ever, while JFA seeks to separate the speaker and the session vari-
ability via subspace analysis, it has no structural way to guarantee
their two subspaces orthogonal. Rather, they rely on the data bal-
ance to factor out the speaker variability.
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Fig. 1. Factorized adaptation in subspaces. Speaker subspace and
environment subspace is orthogonal: {u1,u2}⊥{v1}

3.2. Factored Adaptation Using Subspace Transforms

We utilize the proposed orthogonal subspace model in (5) for sep-
arately adapting the speech recognizer to a specific speaker or/and
environment independently. The basic idea is illustrated in Fig.1,
where the speaker subspace is realized in R2 and environment sub-
space in R1 for visualization. In the figure, the impact of speaker
and environment attributes modeled in a transform is represented by
the vector (x,y). For example, the transform for acoustic condi-
tion a is represented by the point (xa,ya). Suppose that we want to
adapt the model to another target condition b. In this framework, the
only requirement to reflect the environment transition is an update
of ya, which is ∆y, while the speaker factor xa is fixed. This is
possible due to the orthogonality between the speaker and environ-
ment subspaces, i.e., U⊥V. Ideally, any changes of one factor in
the specified subspace are assumed to have no impact on the other
factor. Similarly, to adapt the model to another operating point c, the
speaker factor xc needs to be updated while the environment factor
ya is fixed. From the speaker adaptation point of view, it enables
a more robust speaker transform to be obtained in terms of envi-
ronment immunity. By projecting the transform onto the speaker
subspace, we can remove the noise factors specified for a particu-
lar recording environment from the transform. It allows fast speaker
adaptation in rapidly changing acoustic environments by reusing the
speaker information obtained in a particular environment even if the
speaker’s environment later changes.

3.3. Subspace Modeling via Orthogonal Subspace Projection

The first step in deriving the speaker subspace is to eliminate the
impact of the interfering environmental variability, which is repre-
sented by the columns of V. The approach is to form an operator
that projects each data point in training data set, E, onto a subspace
that is orthogonal to the columns of V. The vector resulting from
such an operation is ideally more resistant to environment factors.
In the least squares sense, the optimal interference rejection operator
is given by the D ×D matrix P as follows:

P = I−VV† , (6)

where V is a low-rank matrix whose orthonormal columns define
the dimensions to be removed from the space E. In this work,
those dimensions are related to environment variability. V† =
(VTV)−1VT is the pseudo-inverse of V, where V† = VVT if
vi

Tvj = 0, vi ∈ V, i, j = 1, .., re. This operator has the same

structure as the orthogonal complement projector from the theory of
least squares [15].

Operating the orthogonal projector P on (5), we have

Pw = Pw̄ + PUx + PVy

= Pw̄ + Ux,
(7)

since U⊥V, VTV = I. It is clear that, for the purposes of acoustic
factorization, this approach optimally rejects the interfering environ-
ment attributes from w(se), in that P reduces the contribution of Vy
to zero while keeping the desired components of Ux intact. Thus,
in the subspace that is orthogonal to the columns of V, the speaker
subspace U can be readily derived using PCA with the correlation
matrix of {Pwi|wi ∈ E}. It derives a set eigenvectors, un ∈ RD ,
part of which comprises column vectors of U = [u1,u2, ...,urs ] to
span the speaker subspace.

The second step is then to find the matrix V. Our approach
to obtain the orthogonal projection matrix P and the corresponding
low-rank matrix V = [v1,v2, ...,vre ] is borrowed from the idea of
Nuisance Attribute Projection (NAP) [16]. Though it was originally
designed to develop a modified kernel matrix for a support vector
machine (SVM), without loss of generality, we apply the basic con-
cept to the proposed subspace modeling framework such as

v∗ = arg min
v,‖v‖2=1

∑
i,j

A ‖P(wi −wj)‖22 , (8)

where wi and wj represent any pair of transforms in a background
dataset E. A is a symmetric matrix consisting of weight param-
eters aij to efficiently minimize the average distance of transform
pairs (wi,wj) in the projection space, where aij can be selected
in several different ways [17]. In this paper, we set aij = 1 for
the transforms whose speaker identities are the same, and aij = 0
otherwise. It intends to minimize the average distance of cross-
environment samples. Specifically, by removing the subspace de-
fined by v∗, any transform pairs of (s, e1) and (s, e2), e1 6= e2, are
pulled together in the projection space. Thus, the vector set {v∗}
can be naturally regarded as column vectors spanning the environ-
ment subspace. A somewhat lengthy calculation shows that the v∗ is
obtained from the generalized eigenvalue problem KZKv = λKv,
where K = (PE)T (PE) and Z = diag(V1) −V. The detailed
derivation can be found in [18].

4. EXPERIMENTS AND ANALYSIS

The proposed subspace-based acoustic factorization framework was
evaluated on the Aurora 4 corpus [19], which consists of the Wall
Street Journal (WSJ0) 5k-word corpus degraded by six types of noise
- car, babble, restaurant, street, airport and train. SNRs in the training
set range from 10 to 20 dB and from 5 to 15 dB for test set. There are
7,138 utterances in the training set, produced by 83 speakers. The
evaluation set includes 7 subsets grouped by noise type, regardless
of the SNR, each consisting of 330 utterances produced from eight
speakers. Standard 39-dimensional MFCC features consisting of 13
static, first and second order dynamic features including C0 were
used with cepstral mean normalization. Cross-word triphone mod-
els with 6916 distinct tied-states and 16 components per state were
used for acoustic modeling and the standard bi-gram language model
provided for the Aurora 4 evaluation were used in decoding. To es-
timate the low-rank matrices, U and V, for subspace construction,
the same training set was used. As an initial investigation, they were
trained using both speaker and environment labels. Each of training
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Table 1. Word accuracy (%) of three adaptation schemes: None,
CMLLR, batch. Speaker transform (CMLLR) was estimated in a
noisy restaurant condition and applied to remaining 6 environments.

scheme clean car babble street airport train Avg.

Baseline 92.5 90.4 84.0 79.7 85.9 79.5 85.3

CMLLR 81.5 85.2 82.5 80.8 84.0 77.0 81.8

Batch 94.5 92.7 87.8 83.2 88.6 83.9 88.5

utterances was clustered as one of 7 environment classes depending
on the noise type in advance. In this work, the constrained maximum
linear regression (CMLLR) method [14] was used to evaluate the ef-
fectiveness of the proposed subspace model. For subspace models,
rs = 30 for U and re = 6 for V were used for evaluation.

The experiments simulated a practical enrollment scenario in
which adaptation utterances were collected in a single noise con-
dition (restaurant) while the test environment varied over all differ-
ent 7 noise conditions. For speaker enrollment, 10 utterances were
used for each speaker to adapt the speaker independent (SI) model
to the speaker in a unsupervised mode. A global CMLLR transform
was used, and unadapted decoding was first performed using the SI
model trained on the multi-condition training data. Table 1 shows the
word accuracy for 6 other environment conditions. The results were
compared to that of system Baseline, which was decoded without
speaker adaptation. As expected, the speaker transform estimated in
a specific environment, and applied to different environments, de-
graded the accuracy on all 6 environments. The average accuracy
dropped to 81.8% from the baseline accuracy of 85.3% . This reflects
the fact that the speaker transforms estimated in noisy environments
model both of speaker and the environment variability and thus, their
effectiveness is not guaranteed when the environment changes. As
an upper bound on performance, we aevaluated the batch mode CM-
LLR adaptation in which each test utterances were decoded using the
exact speaker/environment transform. It assumed that we had adap-
tation data for all operating conditions and learned transforms for
each speaker/environemnt combination. By applying the proposed
factored adaptation method, we expect to achieve a competitive re-
sult to that of the batch scheme while not requiring the complete set
of adaptation data and transforms.

The same experiments were repeated using the proposed sub-
space transforms in an acoustic factorization framework. First, we
demonstrated the effectiveness of the speaker subspace transform,
SSCMLLR-spk. It was estimated by projecting the CMLLR trans-
forms onto the speaker subspace so that it excluded the impact of
environment while keeping the most of speaker information intact.
The results are shown in table 2. SSCMLLR-spk achieved an accu-
racy of 86.4% on average, which is a 7.5% reduction of word error
rate compared to the baseline (85.3%). Notice that, this improve-
ment in accuracy required neither additional adaptation data nor es-
timating a new transform. The speaker information which was suc-
cessfully decoupled from the enrollment data was recycled to adapt
the model. Compared to the conventional scheme of CMLLR, in the
proposed SSCMLLR-spk framework, the subspace expanded by the
speaker factors was orthogonal to the subspace expanded by the en-
vironment factors. It allowed speaker transforms learned on noisy
adaptation data to explain only the speaker characteristics, making it

Table 2. Word accuracy (%) of the proposed acoustic factorization
framework. The speaker transform SSCMLLR-spkr was estimated in
a noisy (restaurant) condition and applied to remaining 6 environ-
ments. The environment transforms in SSCMLLR-(spkr+envr) were
obtained independently of speaker identity.

scheme clean car babble street airport train Avg.

SSCMLLR-
spkr 91.4 91.2 85.7 82.1 86.6 81.4 86.4

SSCMLLR-
(spkr+envr) 93.4 91.7 86.7 82.6 87.3 82.8 87.4

applicable regardless of environment. A lowered WER in the clean
condition indicates that, although the speaker and environment fac-
tors can be decoupled to some extent, the speaker factor derived from
noisy environments may have some limitations to fully reflect the
speaker characteristics in clean condition.

To jointly compensate the speaker and environment variabili-
ties in the proposed acoustic factorization framework, the speaker
transform estimated in the previous experiment was used in con-
junction with an environment transform estimated during the train-
ing phase, independently of speaker identities. Table 2 shows the
results. The recognition accuracy in the unseen environments im-
proved to 87.4%, which is a 14.3% relative improvement from that
of the baseline scheme, and fairly close to the upper bound two-pass
(batch) performance of 88.5%. Notice that without acquiring adapta-
tion data from all combinations of speaker and environment operat-
ing conditions, the proposed factored adaptation framework obtained
performance competitive with the batch mode system. The bene-
fit of this SSCMLLR-(spkr+envr) system is more significant across
complex acoustic conditions. It provides a more efficient adaptation
process by controlling each source of variability rather than cover-
ing all the possible combinations of such factors. The system can
recycle the speaker transform obtained in one noise condition even
if the speaker’s environment later changes. Moreover, it can import
an environment transform which was obtained by different users in
the same environment, which allows the system to synthesize target
transforms for many possible operating conditions.

5. CONCLUSION

In this paper, we proposed a subspace-based acoustic factorization
framework, which enables the speech recognizer to adapt to spe-
cific speaker or/and environment variability separately. The tech-
nique to approximate transforms in factor-dependent low-rank sub-
spaces enabled each of transforms lying on different subspaces to
relate to different sources of variability. It allowed efficient and
fast speaker adaptation in noisy environments by reusing the speaker
transform estimated in one environment even if the speaker’s en-
vironment changed. Environment transforms, estimated from data
from a number of speakers, were combined with any speaker trans-
forms to enable the recognizer to operate beyond the environment
seen in the adaptation data. This was possible as a result of the in-
dependence among the estimated factor-dependent subspace trans-
forms.
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