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ABSTRACT

Current speech-input systems typically use a nonspeech thresh-

old for end-of-utterance detection. While usually sufficient for short

utterances, the approach can cut speakers off during pauses in more

complex utterances. We elicit personal-assistant speech (reminders,

calendar entries, messaging, search) using a recognizer with a dra-

matically increased endpoint threshold, and find frequent nonfinal

pauses. A standard endpointer with a 500 ms threshold (latency) re-

sults in a 36% cutoff rate for this corpus. Based on the new data, we

develop low-cost acoustic features to discriminate nonfinal from fi-

nal pauses. Features capture periodicity, speaking rate, spectral con-

stancy, duration/intensity, and pitch of prepausal speech – using no

speech recognition, speaker or session information. Classification

experiments yield 20% EER at a 100 ms latency, thereby reduc-

ing both cutoffs and latency compared with the threshold-only base-

line. Additional results on computational cost, feature importance,

and speaker differences are discussed.

Index Terms— endpointing, acoustic-prosodic features, per-

sonal assistants, pausing, computationally efficient

1. INTRODUCTION

End-of-utterance detection (or speech endpointing) is an important

initial processing step in human-computer dialog systems. An ideal

endpointing mechanism (a) does not miss any speech from the user,

and (b) stops listening shortly after the utterance has ended. Most

systems employ a simple pause-length threshold (typically 500 ms

to 1 second) for endpointing [1]. While the approach works reason-

ably well for short utterances, it can cut speakers off during pauses

in more complex utterances – slowing an interaction and frustrat-

ing users [2]. The frequency and duration of pausing is expected to

be particularly high in cases where speakers are distracted by other

real-world tasks, particularly for mobile applications. Other factors

that increase internal pausing are waiting for dynamic screen con-

tent, deciding among many alternatives, adding multiple facets to a

query, and leaving more complex messages in voice dictation. Sim-

ply increasing the pause threshold is not a viable solution, since this

increases system latency at true utterance ends.

Previous studies used lexical and acoustic-prosodic cues for

speech endpointing [3, 4] in an early human-computer dialog sys-

tem. Related work has used similar features for disfluency detec-

tion, emotion classification, detection of developmental disorders,

speaker-turn identification and speech/nonspeech classification, in
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both human-computer and human-human dialog [5–18]. Lexical

cues include word ngrams; prosodic cues include silence duration,

vowel or syllable duration, pitch (F0) and formant frequencies. A

few studies (e.g., [15]) have also used large-scale acoustic feature

sets extracted with the openSMILE toolkit [19].

The present study aims to develop features for improved end-

pointing in present-day personal-assistant technology. Our goal is

to design an endpointing mechanism that triggers whenever a non-

speech segment of pms (where p is as small as possible) is detected,

and estimates, based on the pre-pausal speech, whether or not the

speaker is done. Our approach is novel with respect to prior work

in a number of ways. We are particularly interested in the poten-

tial of nonlexical features, since endpointing is typically done on a

user’s device before speech is sent to a remote server for recogni-

tion. Nonlexical features also offer potential domain independence,

which is important for broad coverage over different application do-

mains. Because of the task definition, all features must be purely

causal, or based only on speech occurring before the pause in ques-

tion. For practical reasons, we consider only features that do not rely

on speaker or session normalization, since this information compli-

cates an implementation and may not always be available. Features

may differ by speaker (and we indeed find this is the case), but their

computation does not rely on this information.

Finally, unlike past work, we collect a new database of personal-

assistant speech (via prompt-based elicitation), and do so with a

modified endpoint threshold of 5 seconds. This is done for two (re-

lated) reasons. First, current commercial systems typically use end-

point thresholds of 1 second or less (larger thresholds produce too

much latency for true utterance ends). Data collected with such sys-

tems are not useful for our purpose, because several utterances would

only be partially saved owing to speaker cutoffs. Moreover, there is

no reliable way of judging whether or not a given recording is in-

complete. Second, speakers quickly adapt to systems that cut them

off, by waiting longer to start, or breaking down their utterances into

smaller chunks. In other words, they do not behave the same way as

they would if they did not fear being cut off.

2. METHOD

2.1. Data

We developed an elicitation method to collect complex utterances. A

tool reads prompts from a text file and displays them in random order

over subjects. The subjects are all adult, native speakers of American

English. They are instructed to speak as if they were talking to their

personal assistant, and to try to sound as natural as possible. Once a

prompt is displayed, the subjects are given 3 seconds to start speak-
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(a) Nonfinal pauses are typically preceded by steadier pitch contours, longer segments with continuous voicing, and syllables
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(b) Looking at short time intervals (denoted by u), nonfinal pauses are usually preceded by more constant vocal-tract features when compared

to utterance ends. Sometimes, the two classes also differ with regard to spectral modulation over long time intervals (denoted by y).
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(c) Syllables preceding nonfinal pauses are usually more periodic compared to syllables before utterance ends.

Fig. 1: Illustration of selected features.

ing, using any content from their personal lives that would make

sense. All prompts begin with a few keywords, encouraging sub-

jects to start speaking without planning their utterances completely;

for example: “Answer email from <PERSON> about <TOPIC>”.

Responses are recorded in a quiet environment using a close-talking

microphone, at a sampling rate of 16 kHz and a resolution of 16

bits/sample. Recognition output is also displayed (using a message-

dictation back-end) to simulate the feedback mechanism of a dialog

system. This is important: users saw the same output as with an

actual system, including errors, but the system waited ten times as

long before cutting off during a pause. Note that the recognition

hypothesis is presented only after the subject has stopped speaking,

and that subjects are not allowed to respond to the recognition errors

they observe. The database contains a total of 5297 utterances from

34 speakers; the number of utterances per speaker varies from 82

to 180. We collected many utterances per speaker for two reasons.

First, we wanted speakers to learn that the system did not cut them

off as quickly as typical speech dialog systems. Second, we were

interested in whether speakers differ in pause behaviors.

We define a nonfinal pause as a mid-utterance silence that is at

least 100 ms long – this is about the shortest duration we can choose;

shorter pauses may correspond to stop bursts. Roughly 70% of the

utterances in our corpus have at least one nonfinal pause, and the

pause duration ranges from 100 ms to 10.7 seconds (median value =

380 ms). For convenience we use word alignments from a message-

dictation back-end to locate nonfinal pauses; obviously in practice

a nonspeech detector would be used. While this discrepancy could

somewhat affect results, we assume that advanced endpointing fea-

tures would only be used in conjunction with a good nonspeech de-

tector, and that results for pause detection would be roughly compa-

rable for cleaner signals. For noisier signals, all features would be

affected, a topic beyond the scope of the current paper.

2.2. Features

Based on prior work on pausing, as well as on inspection of our new

data, we study features grouped into five types: (1) pitch trends, (2)

duration and intensity, (3) spectral constancy, (4) speaking rate, and

(5) periodicity. A brief motivation for each type is given below.

• Pitch trends: F0 remains fairly steady before nonfinal pauses,

but typically falls and/or fluctuates more at utterance ends (see

Fig. 1a). This feature type models intonation patterns, with a nor-

malization to account for the speaker’s ‘baseline’ F0.

• Duration and intensity: Syllable intensity tends to drop

more at utterance ends (because of reduced vocal effort), and

continuously-voiced segments tend be longer before nonfinal pauses

(see Fig. 1a). This feature type models these two phenomena, with a

normalization to account for the speaker’s ‘baseline’ intensity.

• Spectral constancy: Speakers appear to maintain a more

fixed vocal-tract configuration before nonfinal pauses, especially

in syllable-final phonemes (both voiced and unvoiced). This phe-

nomenon can be discerned from spectrograms (see Fig. 1b); we

model it by analyzing the signal over short time intervals.

• Speaking rate: Some speakers tend to lower their speaking

rate as they approach a nonfinal pause, presumably to gain time to

plan content. We model speaking rate using the amplitude modula-

tion of spectral components over long time intervals (see Fig. 1b).

• Periodicity: We observed in our corpus that voiced segments

before nonfinal pauses are, in general, more regular and periodic

compared to voiced segments at utterance ends (Fig. 1c). We at-

tribute the aperiodicity in utterance-final syllables to a possible re-

duction in subglottal pressure, which makes it difficult to sustain

regular vocal-fold oscillations.
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Fig. 2: Distributions for the five feature types (2 representative features per type), obtained by pooling results over all speakers.

Our system uses 15 features in total. Due to space limitations,

we discuss the step-wise implementation of two representative fea-

tures from each of the feature types. Note that all features are com-

puted using only the given utterance (from the beginning up to the

100 ms-long silence). Since the phenomena just discussed tend to be

distributed over time and frequency, the algorithms are designed to

capture the combined effect of several short-term observations via a

statistic such as the median or the minimum. The dynamic ranges of

all features are reduced using log() or power-law compression.

• Pitch trends – F0 drop: (1) Using the Snack Sound Toolkit

(get f0) [20], obtain F0 and the corresponding voicing decision at 10

ms intervals. (2) Divide the utterance into segments that are contin-

uously voiced. (3) Compute the log ratio of the minimum F0 in the

last segment to the median F0 over all previous segments.

• Pitch trends – F0 fluctuation: (1) Obtain the F0 contour and

voiced segments using Snack. (2) Compute the Hadamard transform

[21] of the last 16 F0 values in the last voiced segment. (3) Find the

log ratio of (h2
1 +h2

2) to
∑15

k=0 h
2
k , where {h0, h1, . . . , h15} denote

the transform coefficients (note that the kth Hadamard basis function

has k zero crossings).

• Duration and intensity – continuous voicing duration: (1)

Obtain voiced segments using Snack. (2) Compute log((M − 1) ×
0.01), where M is the number of frames in the last voiced segment

(with an inter-frame spacing of 10 ms).

• Duration and intensity – intensity drop: (1) Compute an in-

tensity (energy) contour using 20 ms frames at 10 ms intervals. (2)

Smooth the intensity contour using a 5-point moving-average filter.

(3) Detect the peaks in the smoothed contour, and discard those that

are within 100 ms of a higher peak; the remaining ones correspond

roughly to syllable locations. (4) Compute the log ratio of the final

syllable peak to the median of all previous syllable peaks.

• Spectral constancy – filter-bank entropy: (1) Consider the

last 500 ms of the signal. Divide it into 200 ms chunks with 100

ms overlap. (2) For the ith chunk (i varying from 1 to M ): divide

into 20 ms frames with 10 ms overlap; compute the FFT magnitude

spectrum of each frame and pass it through a 26-channel Mel filter-

bank; find the time variance of each channel output; compute Σ(i),

the average variance across channels. (3) Find the log minimum of

{Σ(1),Σ(2), . . . ,Σ(M)}.
• Spectral constancy – F2 standard deviation: (1) Obtain

voiced segments using Snack. Divide the last voiced segment into

200 ms chunks with 100 ms overlap. (2) For the ith chunk (i varying
from 1 to M ): use Snack to estimate the second formant frequency

(F2) at 10 ms intervals; compute σ(i), the standard deviation of F2

over time. (3) Find the log minimum of {σ(1), σ(2), . . . , σ(M)}.
Similar features can be computed using F1 and F3.

• Speaking rate – filter-bank modulation: (1) Divide the last 1

second of the signal into 20 ms frames with 10 ms overlap (‘sam-

pling rate’ = 100 Hz). (2) Compute the FFT magnitude spectrum of

each frame and pass it through a 26-channel Mel filter-bank. (3) For

the ith channel (i varying from 1 to 26): compute the FFT magnitude

spectrum of channel output (this is essentially the amplitude modu-

lation spectrum with a 50 Hz bandwidth); compute ρ(i), the percent-

age energy above 10 Hz in the modulation spectrum. (4) Find the

log average of {ρ(1), ρ(2), . . . , ρ(26)}.
• Speaking rate – intensity modulation: (1) Divide the last 1

second of the signal into 300 ms chunks with 100 ms overlap. (2) For

the ith chunk (i varying from 1 to M ): obtain a smoothed intensity

contour (as described earlier); compute ν(i), the percentage energy

above 4 Hz in the modulation spectrum of the intensity contour. (3)

Find the log maximum of {ν(1), ν(2), . . . , ν(M)}.
• Periodicity – HNR: (1) Obtain voiced segments using Snack.

(2) Divide the last voiced segment into 60 ms frames with 10 ms

overlap. (3) Estimate the harmonic-to-noise ratio (HNR) of each

frame in the last segment using the algorithm proposed in [22]. (4)

Compute the 75th percentile of the frame-wise HNRs.

• Periodicity – cross correlation: (1) Using Snack, obtain voic-

ing decision and the corresponding value of normalized cross cor-

relation [23] at 10 ms intervals. (2) Compute the cube root of the

percentage number of frames in the last voiced segment with a nor-

malized cross correlation greater than 0.9.

Figure 2 shows the distributions obtained by pooling results

from all 34 speakers. Except for speaking rate, all feature types

provide reasonably good separation between nonfinal pauses and

utterance ends; this will be discussed further in Sec. 3.4.

2.3. Classification experiments

Our task is to determine whether the speaker is done (negative class,

since our target class is nonfinal pauses) or not done (positive class),

whenever a silence of 100 ms is encountered. In total, our database

has 5297 instances of utterance ends and 8061 instances of nonfinal

pauses. Experiments use leave-one-out cross validation – leaving

out data from one speaker in the training phase (in order to be used

for evaluation), and iterating the process over all the speakers in the

database. Note that data from the same speaker are never used for

both training and evaluation. Support vector machines (SVMs), as

implemented in LIBSVM [24], are used as classifiers. All 15 fea-

tures are scaled to lie in the range [-1,1], prior to training and evalu-

ation. The standard radial-basis-function kernel is used, and the opti-

mal values of C (the penalty paramter) and γ (the kernel parameter)

are determined via a two-dimensional grid search: C is chosen from

{2−5, 2−3, . . . , 215} and γ is chosen from {2−15, 2−13, . . . , 23}.

3. RESULTS AND DISCUSSION

3.1. Results overall and by speaker

Figure 3a shows receiver operating characteristic (ROC) curves –

plots of correct detection probability (Pd) versus false alarm prob-

ability (Pf ) – based on overall classification results and on results
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Fig. 4: Relative importance of the feature types.

for six speakers in our database. The overall equal error rate (EER)

is 19.9%. It is clear from the ROCs that there are differences by

speaker, warranting further study on speaker adaptation. Informal

listening suggests true speaker differences in how nonfinal pauses

are rendered acoustically. For example some speakers marked non-

final pauses by preceding pitch rises whereas others did not.

3.2. Comparison with fixed-silence-threshold baseline

To compare performance to a baseline system that uses a fixed pause

threshold, we calculate the false negative rate (nonfinal pauses mis-

classified as final, or “cutoffs”) as a function of the pause-length

threshold (or the waiting time); the resulting curve is shown in

Fig. 3b. As indicated by the red circle, the baseline mechanism has

to wait for 750 ms (before endpointing) in order to match the EER

performance of the proposed system, whose waiting time is just 100

ms (indicated by the blue circle). In other words, our approach can

match the baseline system in performance while achieving much

lower latency (about one-eighth in this case). An additional compar-

ison is at 500 ms, a common silence threshold for deployed systems.

A standard system using a 500 ms latency results in premature

cutoffs for 36% of the utterances in our corpus; in comparison the

proposed system cuts off only 20% at a latency of only 100 ms.

3.3. Analysis by feature cost

As noted earlier, our end goal is practical online implementation,

so feature cost is an important consideration. We looked at the

performance-cost trade-off by simply ranking features according to

our estimates of computational complexity, and running classifica-

tion experiments with the top-N features. Simple signal processing

steps such as Mel filter-bank processing and intensity contour es-

timation are ‘cheap’; voiced/unvoiced classification is ‘moderately

expensive’; F0 and HNR estimation are ‘expensive’; and formant

estimation is ‘very expensive’. If two features share the same kinds

of operations, the more complex feature is that which requires nor-

malization with respect to a baseline and/or a large buffer duration.

Fig. 3c shows ROC curves for the top-N features (N = 15, 12, 10,

8, 6). Discarding the three most expensive features (which happen

to be formant standard deviations) has little effect on performance;

the filter-bank entropy feature appears to be adequate for modeling

spectral constancy. The top-10, top-8 and top-6 features yield EERs

of 22.7%, 24.8% and 26.4%, respectively. For resource-constrained

applications, the top-10 features seem to offer a good trade-off point.

3.4. Relative importance of feature types

An assessment of the relative contributions of the proposed feature

types can guide us towards improved feature modeling schemes (fea-

ture weighting, for example). To quantify the importance of a feature

type, we measure the relative increase in EER (denoted by ∆EER)

that is incurred by removing it from the complete feature set; see Fig-

ure 4. While spectral constancy is the most useful feature type, dura-

tion and intensity, pitch trends and periodicity also make substantial

contributions. However, speaking rate is not useful – inconsistent

with studies of human-human hesitation. A possible explanation is

that speech timing is less helpful in human-computer dialog, because

speakers use a slower and more deliberate style overall when talking

to a system that makes recognition errors.

4. CONCLUSION

Through our newly-collected database of personal-assistant speech,

we find that speakers pause quite frequently during their utterances,

especially while composing long, complex messages that are not

planned a priori. In order to minimize cutoffs (due to long pauses)

without incurring high latency, we need an approach that is causal,

online and computationally efficient. We explored five types of

acoustic-prosodic features based on pitch, intensity, voicing, short-

term and long-term spectral characteristics, and glottal phenomena.

The features do not need information from speech recognition, and

do not rely on speaker or session statistics. Compared to a stan-

dard endpointer, which yields a 36% cutoff rate at 500 ms latency,

our approach reduces cutoffs to less than 20% at only 100 ms la-

tency. Speaker-dependent results suggest that further benefit might

be obtained using speaker-adaptive modeling, for relevant applica-

tions. Finally, an analysis of performance by feature cost reveals that

good performance can be achieved using fewer, cheaper features.

Future work involves experimenting with noisy utterances and with

prompts that are designed to elicit more free-form speech.
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