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ABSTRACT

In this paper we investigate a Deep Neural Network (DNN)
based approach to acoustic modeling of tonal language and
assess its speech recognition performance with different fea-
tures and modeling techniques. Mandarin Chinese, the most
widely spoken tonal language, is chosen for testing the tone
related ASR performance. Furthermore, the DNN-trained,
tone-sensitive model is evaluated in automatic detection of
mispronunciation among L2 Mandarin learners. The best
DNN-HMM acoustic model of tonal syllable (initial and
tonal final), trained with embedded F0 features, has shown
improved ASR performance, when compared with the base-
line DNN system of 39 MFCC features. The proposed system
achieves better ASR performance than the baseline system,
i.e., by 32% and 35% in relative tone error rate reduction
and 20% and 23% in relative tonal syllable error rate reduc-
tion, for female and male speakers, respectively. In a speech
database of L2 Mandarin learners (native speakers of Euro-
pean languages), 2% equal error rate reduction, from 27.5%
to 25.5%, has been obtained with our DNN-HMM system
in detecting mispronunciations, compared with the baseline
system.

Index Terms— Computer-Aided Pronunciation Training,
F0, Acoustic Model, Mandarin, Deep Neural Network

1. INTRODUCTION

In a tonal language, tone plays an important lexical role in
addition to its relevance to speech prosody, i.e., words of
the same syllables but different tones are lexically different.
Therefore, acoustic modeling of a tonal language inevitably
needs to utilize the tone relevant information for good speech
recognition performance or for a Computer Assisted Lan-
guage Learning (CALL) system. Among all tonal languages,
Mandarin Chinese, the official language in China, is the
mostly widely used tonal language in terms of speaking pop-
ulation. Also, due to the rapid economic development in
China recently, Mandarin has become increasingly popular
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as a second language among speakers of different mother
tongues. It is recently estimated that more than 40 million
people around the world are studying Chinese [1]. Naturally,
this phenomenal surge of Chinese learning creates a short-
age of qualified teachers and language learning aids. CALL
systems, powered by the advancement of speech technology,
can bridge the gap between the supply and demand of Chi-
nese language teachers and have become ubiquitous learning
tools with handy smart phones, tablets, laptop computers, etc.
The indispensable, lexical role played by the tonal patterns
in Mandarin turns out to be a difficult hurdle for a foreign
speaker whose mother tongue is non-tonal to perceive and
to mimic the tone patterns. A high quality Computer Aided
Pronunciation Training (CAPT) system is therefore useful for
helping such L2 language learners.

Recently, a new machine learning algorithm called Deep
Neural Network (DNN) has demonstrated significant speaker
independent, continuous speech recognition performance im-
provement, compared with the conventionally trained GMM
recognizers [2][3]. Lei [4] has incorporated tone-related pos-
teriors, extracted from a multi-layer perceptron (MLP), with
spectral features for conversational Mandarin speech recog-
nition and obtained 2.5% character error rate reduction. Qian
[5] has also applied the DNN to mispronunciation detection
and diagnoses in L2 English language learners and obtained
significant performance improvement. Extending this ap-
proach to pronunciation quality scoring has achieved similar
performance improvement [6]. The DNN-based structure is
efficient to decompose the input features into effective basis
functions which in turn can be further discriminatively trained
by a “soft-max” top layer of DNN to simulate the class pos-
terior probabilities, e.g., the sub-phonemic “senones” units.
The Goodness of Pronunciation (GOP) scores estimated from
the DNN output correlate better with human expert’s eval-
uations than the conventional GOP scores obtained with a
conventional GMM-based system [6]. The frame posterior
which can be computed directly without going through a
forward-backward decoding lattice,is also advantageous for
fast, on-line, multi-channel applications.

In this study, we investigate different ways to employ F0,
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the main acoustic cue of tonal information, in DNN-based
acoustic modeling of Mandarin speech. Its improved perfor-
mance is assessed with both speech recognition and mispro-
nunciation detection.

2. DNN-BASED TONE MODELING

Each Chinese character, which is a morpheme in written Chi-
nese, is pronounced as a tonal syllable, i.e., a base syllable
plus a lexical tone. All Mandarin syllables have a structure of
(consonant)-vowel-(consonant), where only the vowel nucle-
us is an obligatory component. A mandarin syllable without
tone, is referred as a base syllable here. By the convention
of Chinese phonology, each base syllable can be divided into
two parts: initial and final. The initial (onset) includes what
precedes the vowel while the final includes the vowel (nucle-
us) and what succeeds it (coda)[7]. Most Mandarin initials
are unvoiced and the tones are carried primarily by the finals
in tonal syllables.

While acoustic features such as duration and energy also
contribute partially to tone perception, F0 contour is the most
important acoustic cue of Mandarin tone. In this study we
focus only on F0 and its modeling. In the last few decades,
the main stream for acoustic modeling of speech is GMM-
HMM framework, where a GMM is used to approximate the
distributions of continuous acoustic features. Different from
spectral features, tone or F0 contour, is only quasi-continuous
and F0 disappears in unvoiced segments. Two different ap-
proaches have been proposed to get around this discontinuity
problem in modeling the tone. A heuristic approach is to in-
terpolate F0 in unvoiced regions. The interpolation can be
generated from a smooth function such as a quadratic spline
[8], an exponential decaying function towards the running F0
average [9], or a probability density function (pdf) with a
very large variance [10]. The other approach is to utilize a
more advanced, mixed distribution to model the observation
probability, e.g., multi-space distribution (MSD), proposed by
Tokuda[11] to model the discontinuous pitch contours statisti-
cally. It has been successfully applied to HMM-based speech
synthesis [11] and recognition [7].

In this study, we employ a DNN-based framework for
embedded tone modeling, where tone features are append-
ed to the spectral features, for modeling Mandarin speech.
A Deep Neural Network (DNN) is a feed-forward, artificial
neural network with multiple hidden layers between its input
and output. For each hidden unit j, a function, typically a l-
ogistic one, is used to map all input from the lower layer, xj ,
to a scalar state, yj , which is then fed to the upper layer.

yj = logistic(xj) =
1

1 + e−xj
; xj = bj +

∑
i

yiwij (1)

where bj is the bias of unit j; i, the unit index of lower layer;
wij , the weight on the connection between unit j and unit i in

the layer below. For multi-class classification, a “soft-max”
nonlinear function is used to converts the inputs, xj , into a
class probability, pj , given in eq (2), where k is an index over
all classes.

pj =
exp(xj)∑
k exp(xk)

(2)

All weights and bias are initialized in DBN pre-training [12],
and then discriminatively trained by optimizing the cross
entropy between the target probability and actual output of
“soft-max” with the Back-Propagation (BP) procedure [13].

There are many advantages to embed the F0 contour in
DNN over GMM. First, since tone is a suprasegmental fea-
ture which goes far beyond the time span of a single frame,
a longer window of observations is necessary for capturing
the supersegmental characteristics of tone, hence the resultant
modeling accuracy. The DNN structure is more conveniently
set for augmenting a longer time span of adjacent frames than
the GMM in modeling. Further, there is no underlying as-
sumption of the distribution and modality for input data in the
DNN, e.g., continuous and binary features can be augmented
and modeled together naturally, while it is impossible or cum-
bersome to deal with those heterogeneous features in GMM.
For example, complex modeling methods like interpolation or
MSD have to be adopted. In this study, we use only extracted
F0 values in its logarithmic form (F0 in unvoiced segments is
set as zero, with no interpolation) together with the spectral
features for the DNN based acoustic modeling.

3. EXPERIMENTS AND RESULTS

In our experiments, the DNN-based tone embedded models
are trained and evaluated on tone related recognition perfor-
mance and then tested on their ability in assessing a learner’s
pronunciation quality.

3.1. Tonal Syllable Recognition

A speaker-independent, large vocabulary and continuous
Mandarin speech database (BJ2003) [7] is used for acoustic
modeling. In total, there are 490 speakers (gender balanced)
and each speaker was requested to read through a set of
Chinese text, including modern novels and classical Chinese
writings. The training data contains about 66 hrs of speech
recordings from 230 male and 230 female speakers. 4,000
utterances recorded by the remaining 16 male and 14 female
speakers are used for testing.

All speech signals are sampled in 16k Hz. The MFCC fea-
tures, extracted with a 25ms hamming window, shifted every
10ms, consist of 13 MFCCs. The extraction of F0 is done on
a short-time basis by applying the robust algorithm for pitch
tracking (RAPT) [14]. MFCC, F0 and their first and second-
ordered time differences are concatenated together and used
as input features for model training.
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Table 1. Experimental Configurations

System MFCC F0 ∆ F0 ∆∆F0 U/V
DNN-A

√

DNN-B
√

interp.
√ √

DNN-C
√

raw
√ √

DNN-D
√ √ √ √

DNN-E
√ √ √

To investigate how to model F0 in a DNN-based frame-
work, we configure the experiments as shown in Table 1 with
different features and preprocessing options. In the table,“√

” denotes the corresponding feature is selected in a specific
model experiment; U/V is a binary voicing flag; under F0,
interpolation preprocessing can be selected or not. In DNN-
B, we use an exponential decaying function [9] to interpolate
pitch in unvoiced speech regions. In DNN-C, raw log F0 is
used, i.e., static F0 and its deltas are set as zero in unvoiced
regions, and logarithmic F0 is only used in voiced regions,
whose deltas are calculated by duplicating and extending two
frames outward at the U/V boundaries.

Gender-dependent DNN models are trained. All DNN
models with the same structure: 3 hidden layers, 2k nodes
for each hidden layer, and 3,008 output “senone” states, are
trained with the same experimental configurations, i.e. same
epochs, learning rates and other training parameters. The in-
put of DNN is an augmented, 11 frame super-vector includ-
ing 5 preceding frames, the current frame and 5 succeeding
frames. The phone set used is Phn187 [10], consisting of
187 “phones”, i.e., initials and tonal finals. Tonal final is
a tone embedded unit, i.e., any model trained with Phn187
are trained with corresponding canonical tone labels, with or
without F0 features. In recognition decoding, a free tonal-
syllable loop grammar is used. The tonal syllable recognition
performance between the conventional GMM and DNN based
HMMs is shown in Table 2.

Table 2. Tonal Syllable Error Rate for different models

Male (%) Female (%)
MFCC-39 46.80 45.24

MSD-44-2S 37.98 (+18.9%) 34.77 (+23.1%)
DNN-A 35.40 (+24.4%) 32.88 (+27.3%)

Compared with a baseline system, the relative improve-
ments are shown in parentheses correspondingly. Between
the two previously trained GMM models, MFCC-39 and
MSD-44-2S, MSD-44-2S yields a better recognition perfor-
mance by modeling the F0 with MSD [7]. A new DNN
trained model, DNN-A, which uses the same 39 MFCC spec-
tral features as the MFCC-39 system, outperforms the two
GMM models by a large margin, even without employing F0
features. DNN-A will be used as our baseline DNN model in
later experiments.

In Tables 3, 4 and 5, we compare the tonal-syllable er-
ror rate (TSER), tone error rate (TER) and base-syllable error
rate (BSER) of different DNN models. As shown in Table 3,
when F0 is embedded into DNN modeling (systems DNN-B
and C), we can significantly improve the tonal syllable recog-
nition performance over the baseline DNN-A where no F0
is used. Interpolating F0 (DNN-B) or not (DNN-C) does-
n’t seem to matter that much in recognition performance and
their relative improvement of TSER over the baseline DNN-
A is slightly perturbed around 23% and 20% for male and
female speakers, respectively. In Table 4, the correspond-
ing relative TER improvements are 35% and 32% for male
and female testing sets. Table 5 shows that by integrating
F0 features into DNN we can also improve the recognition
performance of base-syllable error rate (BSER), though by
a smaller margin. Comparing with DNN-B, DNN-C yield-
s a slightly better performance in base syllable recognition
while keeping almost the same performance on tone and tonal
syllable recognition. We conjecture that raw F0 can be bet-
ter utilized by DNN-C training for discriminating voiced a-
gainst unvoiced segments, while the artificial F0 interpolation
in DNN-B, could have introduced some adverse, though mi-
nor, effect to spectrum modeling, hence degrades slightly, its
error rate in base-syllable recognition. Since the rela-

Table 3. TSER for different tone embedded DNN models

Male (%) Female (%)
DNN-A 35.40 32.88
DNN-B 27.36 (+22.7%) 26.29 (+20.0%)
DNN-C 27.21 (+23.1%) 26.36 (+19.8%)

Table 4. TER for different tone embedded DNN models

Male (%) Female (%)
DNN-A 25.69 22.92
DNN-B 16.65 (+35.2%) 15.54 (+32.2%)
DNN-C 16.92 (+34.1%) 15.64 (+31.8%)

Table 5. BSER for different tone embedded DNN models

Male (%) Female (%)
DNN-A 19.93 18.09
DNN-B 18.14 (+9.0%) 17.07 (+5.6%)
DNN-C 17.50 (+12.2%) 16.69 (+7.7%)

tive dynamic range of logarithmic F0 for voiced segments is
small, most of the static F0 points in DNN-C are distributed
in a small region. In DNN-based modeling, all input features
are normalized to a zero mean and unity variance distribution.
We think the static F0 value is mainly functioned as a binary,
U/V decision flag and its numerical value has little effect in
tone discrimination. To further check this conjecture on the
roles played by static F0 and their deltas in tone recognition,
we use DNN-D and DNN-E. In DNN-D we replace the stat-
ic F0 with a binary U/V flag and in DNN-E only use two F0
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deltas without the static F0. Their TER results are shown in
Table 6. It is observed that without the static F0 in DNN, the
TER recognition performance reduction is negligible. and dy-
namic F0 features tend to be more important than static F0 in
recognizing Mandarin tones. It reconfirms that tones are rec-
ognized more by their dynamic shapes characterized by F0
deltas than their static values.

Table 6. TER of DNN-C, D and E

Male (%) Female (%)
DNN-C 16.92 15.64
DNN-D 17.15 (−1.4%) 15.72 (−0.5%)
DNN-E 17.43 (−3.0%) 15.98 (−2.2%)

3.2. Tone Pronunciation Evaluation

A L2 Mandarin language learning corpus, recorded by 295
European speakers whose mother tongues are mainly English
or French, is used to evaluate the performance of thus built
Mandarin CALL system. Each speaker reads about 300 ut-
terances of isolated words, continuous phrases and sentences.
A randomly chosen subset of 1,000 utterances (gender bal-
anced) is rated by two trained phoneticians at initial/tonal fi-
nal level. In total, there are 2,102 mispronounced initial/tonal
finals among all 8,886 units.

Since utterances are recorded by people from different
countries with different mother tongues, an L1 independent
approach is adopted. The DNN based Log Likelihood Ratio
between correct and competing models [6], is used as Good-
ness of Pronunciation (GOP) measure to evaluate the pronun-
ciation quality.The GOP score of a phone p is defined in eq
(3).

GOP (p) = PLTF{ 1

te − ts
· {

te∑
t=ts

logP (ot|p)

− max
{q∈Q,q 6=p}

te∑
t=ts

logP (ot|q)}} (3)

where PLTF (·) is a piecewise linear function to convert the
ratio score to a percentage grading; ot is the argument input
observations of the frame t; ts and te are the start and end
frame indices of phone p, respectively; P (ot|p) is the like-
lihood approximately calculated as the division between the
output of our DNN model P (spt |ot) and the prior of label spt ,
where spt is the “senone” label of frame t generated by force
alignment with the given phone p; Q is the set of all initial-
s/tonal finals for the canonic initial/tonal final p. Our paper
[6] gives more detail description about the GOP estimation
algorithms.

We compare the detection performance of two acoustic
models, DNN-A and DNN-C. The GOP score for each ini-
tial/tonal final is calculated as eq (3), while their correspond-
ing human label, correct pronunciation or mispronunciation,

can be obtained by comparing its canonical transcription with
spoken transcription which is labeled by phoneticians. A bi-
nary decision of correct pronunciation or mispronunciation is
made for each initial or tonal final with a pre-defined thresh-
old. By changing the threshold, we obtain the Receiver Op-
erating Characteristic (ROC) Curve for the two systems as
depicted in Fig.1. The performance of DNN-C is consistently
better than DNN-A. The Equal Error Rate (EER) is improved
by 2.0% from 27.5% down to 25.5% with the embedded F0
features. It is slightly disappointing that by incorporating the
most relevant tone feature F0 in DNN, we managed to im-
prove the detection EER by only 2%. However, we should
be aware that DNN is a very powerful machine learning algo-
rithm which can apparently infer some tone information only
from the 39 MFCC spectral features. The recognition perfor-
mance in tonal syllable error rate comparison (shown in Table
2) between MFCC-39 and DNN-A systems, where both sys-
tems use the same 39 MFCC features, has also confirmed the
superiority of the DNN’s power of this inference. In the fu-
ture, more acoustic features, e.g., energy, duration, will be
investigated.

Fig. 1. Initial and tonal final mispronunciation detection

4. CONCLUSION

We investigate a DNN-based approach to acoustic modeling
of tonal language. Different tone-embedded modeling tech-
niques are compared and their performances in tone related
Mandarin speech recognition are evaluated. DNN-HMM is
also assessed in its ability on detecting L2 Mandarin learner-
s’ mispronunciations. The best tone embedded DNN-HMM
can improve relative tone recognition error rates by 32% and
35%, or relative tonal syllable error rates by 20% and 23%,
for female and male speakers, respectively, compared with
the corresponding DNN-HMM without embedding F0. For
L2 Mandarin learner’s speech data, an improvement of 2%
EER of mispronunciation detection reduction, from 27.5% to
25.5%, can be obtained, by comparing two DNN-based sys-
tems without/with embedded tone modeling.
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