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ABSTRACT

Compressive spectral imagers have gained popularity recently
due to their ability to sense a three-dimensional (3D) data
cube with just a few two dimensional (2D) coded aperture
projection snapshots. The coded apertures are realized by
digital micromirror devices (DMD) which often do not match
the pitch resolution of the focal plane array (FPA). This paper
introduces the forward model and associated reconstruction
algorithm for such mismatched spectral imagers, without the
loss of spectral and spatial resolution. Simulations show the
improvements in the reconstructions achieved with the pro-
posed approach yielding up to 12 dB gain in PSNR with re-
spect to traditional.

Index Terms— Spectral imaging, coded aperture, pitch
resolution, compressive sensing, hyperspectral imaging.

1. INTRODUCTION

Spectral imaging measures the intensity of light at different
wavelengths for each spatial location in a scene. The resulting
three-dimensional (3D) dataset is known as spatio-spectral
data cube. Different spectral imagers have been developed to
capture one dimensional and two dimensional subsets of the
data cube [1]. To obtain the complete data cube, a scanning of
the remaining dimensions is required. These instruments are
adequate to capture static scenes, but their use in capturing
non-static scenes is challenging. Furthermore, the amount
of data captured, stored, or transmitted is directly related to
the amount of sensed data, thus leading to the manipulation
of large datasets. In contrast, compressive spectral imaging
(CSI) senses 2D coded projections of the underlying scene
such that the number of measurements is far less than that
used in scanning-type instruments [2].

The coded aperture snapshot spectral imager (CASSI) is
an example of a CSI architecture whose main components
are a coded aperture and a dispersive element. Figure 1
illustrates the CASSI architecture. It captures multiplexed
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Fig. 1: CASSI Model composed by a coded aperture and a dispersive el-
ement. The data cube is coded, spectrally dispersed and integrated on the
FPA.

(2D) projections of the spatio-spectral datacube using a snap-
shot. The data cube is denoted as F;;;, where 7 and j index
the spatial coordinates, and k£ determines the th spectral
plane. The multiplexed projections in CASSI are given by
Gmn = Zi;ol T (n—k)Fm(n—k)k +Wmn, where T' represents
the coded aperture and w the noise of the system [3].

The CASSI architecture has been recently modified to al-
low capturing multiple snapshots, each admitting a different
coded aperture pattern [4], [5], [6]. In practice, the coded
apertures are usually implemented through photomasks at-
tached to piezoelectric devices [6]. The use of digital mi-
cromirror devices (DMD) has been proposed for realizing
coded apertures in multi-frame measurements [7]. A lim-
itation for the use of DMDs is that the pixel pitch of the
micromirrors A. commonly differs from the pixel size Ay
of the focal plane array (FPA), so there is no pixel-to-pixel
correspondence. Thus, there is a mismatch between the size
of the pixels in the coded aperture and the size of pixels in
the detector. To circumvent this problem, a general strategy
is illustrated in Figure 2 consisting on grouping several pixels
in a super-pixel in both, the coded aperture and the detector,
such that the relation between them is given by p1 Ay = pa A,
where p; # ps # 1 are small integers. This solution, how-
ever, reduces significantly the spatial and spectral resolution
attained in the reconstructions [2], [8].

This work develops a mathematical model of CASSI with
pixel pitch mismatch such that the number of spectral bands
and the spatial resolution is dictated by the smaller of the pixel
sizes min {A4, A.}. Using the forward model for the CASSI
system with mismatched pixels the spatial and spectral reso-
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Fig. 2: The pixel pitch mismatch problem: super-pixels are created by group-
ing several pixels in the coded aperture and in the detector.

lution is increased by a factor of max {p1, p2} with respect
to the traditional super-pixel approach. Instead of creating a
super-pixel, the new technique calculates an equivalent coded
aperture referred to as a synthetic coded aperture which ac-
counts for the pixel mismatching.

2. SYNTHETIC CODED APERTURES FOR
MISMATCHED PIXELS IN SPECTRAL IMAGING

2.1. CASSI System

The optical elements in the CASSI architecture are depicted
in Fig. 1. In this architecture, the spatio-spectral power source
density defined as fo(z,y, A), where (x,y) are the spatial
coordinates and ) is the wavelength, is coded by the coded
aperture T'(z, y) resulting in the coded field f;(z,y, A). The
resulting coded density is then spectrally dispersed by a dis-
persive element before it impinges on the focal plane array
as

Jal,y, N = / / T ) fola o, (e —S (N, o —y)de'dy

M
where h(z’ — S(A\) — x,y' — y) is the optical impulse re-
sponse of the system, and S()) is the dispersion induced by
the prism along the z-axis. The resulting image at the focal
plane array is the integration of the field fo(x,y, A) over the
detector’s spectral range sensitivity A that can be represented
as g(-T, y) - fA fQ(l', Y, A)dA

A CASSI measurement captured on the (m, n)!" pixel of
the detector is given by g, = [ [ g(z, y)p(m, n; z, y)dzdy,

where p(m,n;z,y) = rect (Aid —m, 2= —n) represents
the pixel in the detector and A is the detector pixel pitch.

In discrete notation, the source fo(z,y, A) can be written
as Fijx, wheret € {1,--- ,N}andj € {1,---, N} index the
spatial coordinates, and k € {1,---, L} determines the k*"
spectral plane, the discretized coded aperture is T;;. Notice,
that the coded aperture T;; has binary entries such that T;; €
{0, 1}. The discretized (m,n)*" FPA pixel measurement can
be then written as

L-1

9mn = Z Tm(nfk)]:m(nfk)k + Wimn, 2
k=0
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Fig. 3: Illustration of the spatio-spectral data flow in the CASSI architecture.
The source is coded by the coded aperture 7" and dispersed by a prism. The
FPA detector integrate the intensities. A source voxel is zoomed to identify
the regions Ro, R1 and R2 accounted in Eq. 3.

where w,,, is the white noise of the sensing system.
Notice that the N x M x L data cube is captured by a
N x (N + L —1) FPA.

The forward model of CASSI was recently extended to
account for the non-linearity of the dispersive element. Eq.
2 can thus be modified in the discretization of the disper-
sion curve [4]. This discretization differs from the model in
Eq. 2 inasmuch as the energy from a single voxel is mapped
onto three detector pixels, such that each source voxel can be
split into three regions Ry, R; and Ry. Figure 3 illustrates a
zoomed version of the regions of the source voxel affecting
one pixel on the detector. The corresponding energy of each
region that impinges in the (m,n)!" detector pixel is repre-
sented by the weights wy,, k., Where m, n index the spatial
coordinates, k the spectral dimension and w accounts for the
region Ry, R, and Ry of the source voxel. More specifically,

Wnku = ([[[g, dedydN)(f[ [, roor, dvdyd\)~". The
FPA measurement is then reformulated as in [4]

L—-1 2

Imn = Z Z wmnkuTm(nfkfu)fm(nfkrfu)k7 (3)
k=0 u=0

where m,n = 0,1, ...
u=20,1,2.

,N—-1,k=0,1,...,L — 1 and

2.2. CASSI with pixel pitch mismatch

The proposed strategy to account for the pixel pitch mismatch
problem is to perform a mapping of the coded aperture into
one with higher resolution accounting for the mismatching
effect. The fact that some pixels in the detector will cap-
ture the effects of the coded aperture features completely
whereas others will capture their effect only partially is used
in the formulation of the synthetic coded aperture model.
Formally, represent the ratio between the coded aperture and

the FPA pixel pitch as r = 2;. Define 7'(, y) as the syn-

thetic coded aperture with discrete entries T” Notice, that
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the mismatched pixel model is expressed in terms of the Eq.
3. Denote the pixel size of the synthetic coded aperture as
Ay = min{A4, A.} and the parameters « and 3, account-
ing for the horizontal and vertical fraction of A, that will
be reflected in the new synthetic pixel of T'(z,y). These
fractions can be expressed as,

a{a B>0 @
1, B=0
C, C>0
= ’ 5
8 {L oo’ (5)
where B and C are defined as
B:\\MJT—R. 6)
T
C:L(m“_k_“)Jr—(m—k—uL ™
'

For 0 < a, 8 < 1 the above accounts for a pixel in the
coded aperture T'(z, y) that partially affects a pixel on the de-
tector, whereas o, 3 = 1 assumes the coded aperture pixel
maps entirely onto a pixel on the detector.

Figure 4 (a) presents an example, where the mismatch-
ing relation is p1Ay; = p2A. where p; = 3 and py = 2
and super-pixels are created. Figure 4 (b) presents the pro-
posed approach where a black pixel of the coded aperture is
analized. Notice that the synthetic coded aperture pixel Tij
reflects the effects of the coded aperture pixel T;; by the frac-
tions « and 3. In contrast, the pixel ﬁ j+1 depicts the effects
of the same T;; pixel by (1 — «) and by . To calculate the
pixel 7", an evaluation of the neighbours of the pixel (i, j) of
the coded aperture T is required. In Figure 4, the neighbors
denoted as Tp g, Tp E+1, ID+1,E: TD+1,E+1 are evaluated.
The positions D and E are defined as

b2
E= {(m_f_“)J . ©)

Finally, the synthetic coded aperture TZ-]- can be succinctly ex-
pressed as

Ti; = a(BTp e+ (1-8)Tpet1) +

(1=a) (8 Tpo41,e + (1-8) Tp41,841).  (10)
Hence, the mapped coded aperture could be tuned in such that

the FPA measurement of the discretized CASSI with the pixel
mismatch model is expressed as

(L=Dp1 2 R
Imn = Z ZwmnkuTmn—FnL(n—k—u)ku (11)
k=0 =0

where the spatial and spectral resolutions of this measurement
are dictated by the factor p; such that m,n =0,1,..., (N —
Dprandk=0,1,...,(L—1)p;.
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Fig. 4: (a) Superpixels are created to obtain a pixel-to-pixel correspondence;
(b) mapping from a section of the coded aperture 7" to the corresponding
section of the synthetic coded aperture 7'

3. SIMULATIONS AND RESULTS

In order to simulate the CASSI with the pixel mismatch
model, a set of compressive measurements are calculated us-
ing the model in Eq. 11. A test data cube F with 384 x 384
pixels of spatial resolution and L = 24 spectral bands is used.
To construct these measurements, the spectral data cube
F was acquired by a monochromator in the spectral range
between 450nm and 650nm. A CCD camera AVT Marlin
FO0033B, with 656 x 492 pixels and a pixel pitch size of 9.9um
is used. One of the most important characteristics of the coded
apertures is the transmittance, defined as the amount of light
the coded aperture let pass. To analyze this characteristic,
two levels of transmittance were selected for the simulations,
25% and 50%. The spatial resolution of the coded aperture
T is 256 x 256 pixels. The corresponding synthetic coded
aperture T presents a spatial resolution of 384 x 384 pixels.
The GPSR algorithm is used to obtain the reconstructions
of the data cube [9]. This algorithm solves the optimization
problem f = W{argming||g — HY||> + 7||0||1}, where 0
is an S-sparse representation of f on the basis ¥, and 7 is a
regularization constant [10]. The basis representation ¥ is set
as the Kronecker product between a 2D-Wavelet Symmlet 8
basis and the 1D-Discrete Cosine Transform [11]. The sens-
ing ratio for the simulations is defined as the ratio between
the number of measurements and the number of pixels in the
reconstructed data cubes. The final reconstruction obtained
through the CASSI with mismatched pixels model in Eq. 11
is a 384 x 384 x 24 cube.
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Fig. 5: Reconstructions of bands k = 3,4,7. Left column depicts the
original bands, second column shows the reconstructions using CASSI and
the third column shows the reconstructions using the CASSI with synthetic
coded apertures model.

The simulations use the relation p1A; = poA., where
p1 = 3, p2 = 2 and the pitch sizes of the detector and DMD
are Ay = 99um, A, = 13.68um. As a consequence of
the mismatch, the reconstruction obtained by the traditional
super-pixel approach in Eq. 3 is a 128 x 128 x 8 cube. To
compare these reconstructions and those obtained using the
CASSI with synthetic coded aperture, an interpolation in the
spatial and spectral dimensions should be done. Figure 5 il-
lustrates three original spectral bands of the test data cube
and the respective reconstructions obtained with the CASSI,
and the CASSI with pixel mismatch using sensing ratios of
50% for each of the cases. The improvement in the spatial
quality can be easily noticed. Here, it is important to remark
that besides the quality of the reconstructions, the number of
spectral bands increases by a factor of p; with respect to the
super-pixel approach.

A zoomed version of the original data cube F and the re-
constructions using CASSI and CASSI with pixel mismatch
respectively can be observed in Figure 6. The scenes are
mapped to RGB profiles.

Figure 7 shows a comparison between the mean spatial
and spectral PSNR of the reconstructed images for the CASSI
and the synthetic coded aperture modeling. Figure 7 (a) and
7 (b) depicts the spatial PSNR with coded apertures having a
transmittance of 50% and 25% respectively as a function of
different sensing ratios. Figure 7 (c) shows the reconstructed
spectral signature for two spatial points, indicated as P1 and
P2 in Figure 6 (left), the CASSI with pixel mismatch pro-
vides more accurate results. The average spectral PSNR for
the spectral bands is presented in Figure 7 (d). The PSNR im-
provements achieved by the CASSI with pixel mismatch are
noticeable.

PSNR: 22.5687

PSNR: 32.0042

Fig. 6: (Left) Original data cube J mapped to a RGB profile. (Center) Re-
construction using CASSI and (right), reconstructions using the CASSI with
synthetic coded aperture model.
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Fig. 7: Spatial PSNR of the reconstructed data cube using the CASSI system
and the CASSI with synthetic coded aperture model with a transmittance of
(a) 0.5 and (b) 0.25. (c) Reconstructed spectral signatures for two represen-
tative spatial points, indicated as P1 and P2 in Figure 6 (left) and (d) averaged
spectral PSNR for the different bands.

4. CONCLUSIONS

A forward model of CASSI with pixel mismatching has been
developed. The model avoids creating super-pixels to achieve
a pixel-to-pixel correspondence between the pixels of the
coded aperture and pixels on the detector. Instead, a syn-
thetic coded aperture is defined such that the resolution of
the detector is fully utilized. The use of the proposed model
increases the spatial and spectral resolution. The achieved
improvement for the reconstruction PSNR is up to 12 dB, a
three fold improvement in spectral resolution and a more ac-
curate signature profile is obtained compared with the CASSI
system where super-pixels are created.
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