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ABSTRACT

This paper presents a Bayesian fusion technique for multi-band im-

ages. The observed images are related to the high spectral and high

spatial resolution image to be recovered through physical degrada-

tions, e.g., spatial and spectral blurring and/or subsampling defined

by the sensor characteristics. The fusion problem is formulated

within a Bayesian estimation framework. An appropriate prior

distribution related to the linear mixing model for hyperspectral

images is introduced. To compute Bayesian estimators of the scene

of interest from its posterior distribution, a Gibbs sampling algo-

rithm is proposed to generate samples asymptotically distributed

according to the target distribution. To efficiently sample from this

high-dimensional distribution, a Hamiltonian Monte Carlo step is

introduced in this Gibbs sampler. The efficiency of the proposed

fusion method is evaluated with respect to several state-of-the-art

fusion techniques.

Index Terms— Fusion, multispectral and hyperspectral images,

Bayesian estimation, Gibbs sampler, Hamiltonian Monte Carlo.

1. INTRODUCTION

Fusing a high spatial and low spectral resolution image with an auxil-

iary image of higher spectral but lower spatial resolution, also known

as multi-resolution image fusion, has been explored for many years

[1, 2]. When considering remotely sensed images, an archetypal fu-

sion task is the pansharpening, which consists of fusing a high spa-

tial resolution panchromatic (PAN) image and low spatial resolu-

tion multispectral (MS) image [1, 3]. More recently, hyperspectral

(HS) imaging, which consists of acquiring a same scene in several

hundreds of contiguous spectral bands, has opened a new range of

relevant applications, such as target detection [4] and spectral un-

mixing [5]. Naturally, to take advantage of the newest benefits of-

fered by HS images, the problem of fusing HS and PAN images has

been explored [6]. Capitalizing on decades of experience in MS pan-

sharpening, most of the HS pansharpening approaches merely adapt

existing algorithms for PAN and MS fusion [7]. Other methods are

specifically designed to the HS pansharpening problem such as [8]

or [9, 10] invoking super-resolution techniques. Conversely, the fu-

sion of MS and HS images has been considered in fewer research

works and is still a challenging problem because of the high dimen-

sionality of the data to be processed. The fusion of MS and HS dif-

fers from traditional MS or HS pansharpening since both spatial and

spectral information is contained in multi-band images. Therefore, a

lot of pansharpening methods, such as component substitution [11]

and relative spectral contribution [12] are inapplicable or inefficient

for the HS/MS fusion problem. Since the fusion problem is ill-posed,

Bayesian inference offers a convenient way to regularize the problem
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by defining an appropriate prior distribution for the scene of interest.

Following this strategy, Hardie et al. proposed a Bayesian estima-

tor for fusing the co-registered high spatial-resolution MS and high

spectral-resolution HS images [13]. The estimator of [13] was im-

plemented in the wavelet domain to improve denoising performance

[14].

This work proposes to take into account constraints related to

the fusion problem via appropriate prior distributions used to build

a new Bayesian fusion model. Many works have defined a Bayesian

model for the unknown scene by exploiting a priori information

provided by one of the sensors [13][15]. In this paper, all the sen-

sor specifications (including spectral and spatial responses) are ex-

ploited to properly design the spatial and spectral degradations af-

fecting the image to be recovered (see [16] for more details about

these degradations). To define the prior distribution assigned to the

unknown image, we resort to geometrical considerations well ad-

mitted in the HS imaging literature devoted to the linear unmixing

problem [5, 17]. In particular, the high spatial resolution HS image

to be estimated is assumed to live in a lower dimensional subspace,

which is a suitable hypothesis when the observed scene is composed

of a finite number of macroscopic materials. Two Bayesian estima-

tors are classically considered in the literature: the minimum mean

square error (MMSE) and maximum a posteriori (MAP) estimators

defined as the mean and mode of the posterior distribution. The de-

termination of these estimators requires to solve multi-dimensional

integration or optimization problems, which can be difficult to han-

dle. For instance, algorithms designed to maximize the posterior

distribution may suffer from the presence of local extrema prevent-

ing convergence towards the actual maximum of the posterior. In

this paper, we propose to compute the MMSE and MAP estimators

of the unknown scene by using samples generated according to the

posterior distribution of interest. To bypass the difficulty of sam-

pling in a high-dimensional subspace, a suitable Hamiltonian Monte

Carlo (HMC) algorithm is investigated [18, 19]. It differs from the

standard Metropolis-within-Gibbs algorithm by exploiting Hamilto-

nian evolution dynamics to propose states with higher acceptance

ratio, reducing the correlation between successive samples.

The paper is organized as follows. Section 2 formulates the fu-

sion problem in a Bayesian framework. In Section 3, we propose a

new hierarchical Bayesian model defined by the joint posterior dis-

tribution of the unknown image, its parameters and hyperparameters.

Section 4 studies a hybrid Gibbs sampler based on an HMC method

to sample the posterior distribution of this Bayesian model. Simula-

tions results are presented in Section 5 and conclusions are reported

in Section 6.

2. PROBLEM FORMULATION

LetZ1 and Z2 denote the HS and MS images acquired by two differ-

ent sensors for a same scene X. The observed data are supposed to

be degraded versions of the high-spectral and high-spatial resolution
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sceneX, according to the following observation model

Zp = Fp (X) +Ep (1)

with p ∈ {1, 2}. In (1), Fp (·) is a linear transformation that mod-
els the degradations affecting X for the pth sensor. These degra-

dations may include spatial blurring, spectral blurring and decima-

tion operation. In what follows, the images Zp (p = 1, 2) and the
unobserved scene X are assumed to be pixelated images of sizes

Np = nx,p × ny,p × nλ,p andM = mx ×my ×mλ, where ·x and
·y both refer to spatial dimensions and ·λ is for the spectral dimen-

sion and Np is the total number of measurements in Zp. Classically,

the observed image Zp can be lexicographically ordered to build the

Np×1 vector zp. Without loss of generality, the band interleaved by

pixel (BIP)-like vectorization scheme [20, pp. 103–104] is adopted

in this work (see paragraph 3.2). As a consequence, the observation

equation (1) can be rewritten as

zp = Fpx+ ep (2)

where theM × 1 and Np × 1 vectors x and ep are ordered versions

of the scene X and noise Ep. The noise vector ep is assumed to be

a white Gaussian sequence, i.e., ep ∼ N
(
0Np , s

2
pINp

)
where 0Np

is theNp × 1 vector made of zeros and INp is theNp ×Np identity

matrix. Moreover, in (2), F1 is an N1 ×M matrix that reflects the

spatial degradation F1 (·) and F2 is an N2 ×M matrix that reflects

the spectral degradation F2 (·). Note that when using a single-band
image z1, F1 is an nxny ×nxny (generally sparse) Toeplitz matrix,

that is symmetric for a symmetric convolution kernel κ1.

The problem addressed in this paper consists of estimating the

high-spectral and high-spatial resolution image x by fusing the

spatial and/or spectral information provided by the set of observed

images z = {z1, z2}. For this, we introduce a new hierarchical

Bayesian model detailed in the next section.

3. HIERARCHICAL BAYESIANMODEL

3.1. Likelihood function

Using the statistical properties of the noise vectors ep (p = 1, 2),
the distribution of zp is clearly Gaussian with mean vector Fpx and

covariance matrix s2pINp , i.e.,

f
(
zp|x, s

2
p

)
=

(
1

2πs2p

)Np
2

exp

(
−

1

2s2p
‖zp − Fpx‖

2

)
(3)

where ‖x‖ =
(
x
T
x
) 1

2 is the ℓ2-norm of x. As mentioned in

the previous section, the measurements are generally acquired by

different sensors. Therefore, the observed vectors z1 and z2 are

assumed to be independent, conditionally upon the unobserved

scene x and the noise variances s21 and s22, i.e., f
(
z|x, s2

)
=

f
(
z1|x, s

2
1

)
f
(
z2|x, s

2
2

)
with s2 = (s21, s

2
2)

T .

3.2. Prior distributions

The likelihood of z is parameterized by the unknown scene x to be

recovered and the vector of noise variances s2. In this section, prior

distributions are introduced for these parameters.

Scene prior: Following a BIP strategy, the vectorized image x

can be decomposed as x =
(
xT

1 · · · xT
mxmy

)T
, where xi =

(xi,1 · · ·xi,mλ
)T is the mλ × 1 vector corresponding to the ith

spatial location (with i = 1, · · · , mxmy). Due to the linear mixing

model, xi lives in a subspace R
m̃λ×1 where m̃λ is much smaller

than the number of bands mλ [5, 21]. Therefore, we introduce a

linear transformation from R
mλ×1 to Rm̃λ×1 such that ui = Vxi,

where ui is the projection of the vector xi onto the subspace of

interest and the transformation matrixV is of size m̃λ ×mλ. Using

the notation u =
(
uT

1 · · · uT
mxmy

)T
, we have u = Vx, where

V is an M̃ × M block-diagonal matrix whose blocks are equal to

V and M̃ = mxmym̃λ. A Gaussian prior is then assigned to the

projected vectors ui (i = 1, · · · ,mxmy)

ui|µu
,Σu ∼ N (µ

u
,Σu) . (4)

This Gaussian prior has been used successfully in many image

processing applications including image denoising [22] and image

restoration [23]. It has also the advantage of being a conjugate

distribution for the likelihood function. Consequently, as it will be

shown in Section 4, coupling this Gaussian prior distribution with

the Gaussian likelihood leads to simpler estimators constructed from

the posterior distribution of interest.

Noise variance priors: A non-informative Jeffreys’ prior is assigned

to the noise variances s2p for p = 1, 2, i.e., f
(
s2p

)
∝ 1

s2p
1R+

(
s2p

)
,

where 1R+ (·) is the indicator function defined on R+ (see [24] for

motivations).

3.3. Hyperparameter priors

The hyperparameter vector associated with the parameter priors

defined above is Φ = {µ
u
,Σu}. The quality of the fusion algo-

rithm investigated in this paper clearly depends on the value of the

hyperparameters that need to be adjusted carefully. Instead of fixing

these hyperparameters a priori , we propose to estimate them from

the data by using a hierarchical Bayesian algorithm. This approach

requires to define priors for the different hyperparameters (usually

referred to as hyperpriors) which are summarized in this section.

Hyperparameter µ
u
: The hyperparameter µ

u
is assigned a conju-

gate Gaussian distribution N (µ0,Σ0), where µ0 and Σ0 are fixed

to ensure a non-informative prior for µ
u
.

Hyperparameter Σu: Assigning a conjugate inverse-Wishart (IW)

distribution to the covariance matrix Σu has provided interesting

results in the signal and image processing literature [25,26]. Follow-

ing these works, we have chosenΣu ∼ W−1(Ψ, η), whereW−1 is

the IW distribution and its parameters (Ψ, η)T are fixed to provide

a non-informative prior forΣu.

3.4. Posterior distribution

The unknown parameter vector associated with the proposed hierar-

chical Bayesian fusion model is composed of the projected scene u,

the noise vector s2, i.e., θ =
{
u, s2

}
, and the hyperparameters in

Φ = {µ
u
,Σu}. The joint posterior distribution of the unknown pa-

rameters and hyperparameters can be computed using the following

hierarchical structure

f (θ,Φ|z) ∝ f (z|θ) f (θ|Φ) f (Φ) . (5)

By assuming prior independence between the hyperparameters µ
u

and Σu and the parameters u and s2 conditionally upon µ
u
and
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Σu, the following results can be obtained

f (θ|Φ) = f (u|µ
u
,Σu) f

(
s2

)

f (Φ) = f (µ
u
) f (Σu) .

(6)

The posterior distribution f (u|z), which is obtained by marginal-

izing out the hyperparameter vector Φ and the noise variances

s2 from the joint posterior f (θ,Φ|z) is difficult to handle to

compute the MAP or MMSE estimators of the image u. In-

stead, this paper proposes to use a Markov chain Monte Carlo

(MCMC) method to generate a collection of NMC samples U ={
u
(1), . . . ,u(NMC)

}
that are asymptotically distributed according

to the posterior f (u|z). The Bayesian estimators of u can be

computed using these generated samples. For instance, the MMSE

estimator of u can be approximated by an average of the gener-

ated samples ûMMSE ≈ 1
NMC−Nbi

∑NMC
t=Nbi+1 u

(t), where Nbi is the

number of burn-in iterations required to reach the sampler conver-

gence. The highly-resolved HS image can finally be computed as

x̂MMSE =
(
V

T
V
)−1

V
T
ûMMSE = V

T
ûMMSE. Since it is not

easy to directly sample from f (u|z), we propose to sample accord-
ing to the joint posterior f

(
u, s2,µ

u
,Σu|z

)
by using aMetropolis-

within-Gibbs sampler, which can be easily implemented since all

the conditional distributions associated with f
(
u, s2,µ

u
,Σu|z

)

are simple. These conditional distributions are provided in Section

4.

4. HYBRID GIBBS SAMPLER

The Gibbs sampler has received much attention in the statistical

community to solve Bayesian estimation problems [27] [28]. How-

ever, it cannot be used for generating samples distributed according

to (5) because it is not possible to sample the conditional distribu-

tion of the projected image u (see Section 4.3 for more details). As

a consequence, we propose to study a hybrid Gibbs sampler defined

by the 4-step procedure detailed below.

4.1. Sampling the mean of the image µ
u

Combining the prior of µ
u
with (4), we obtain

µ
u
|Σu,u, s

2, z ∼ N
(
µ

µ
u
|u,Σµ

u
|u

)
(7)

where

µ
µ

u
|u = Σµ

u
|u

(
Σ

−1
0 µ0 +Σ

−1
u

mxmy∑
i=1

ui

)

Σµ
u
|u =

(
Σ

−1
0 +mxmyΣ

−1
u

)−1
.

(8)

The Gaussian distribution (7) is easy to sample since the size of

Σµ
u
|u is m̃λ × m̃λ, where m̃λ is the actual dimension of the space

where the data live, which is generally lower than 10.

4.2. Sampling the covariance matrix of the imageΣu

Standard computations yield the following IW distribution as condi-

tional distribution for the covariance matrixΣu

Σu|µu
,u, s2, z ∼

W−1

(
Ψ+

mxmy∑

i=1

(ui − µ
u
)T (ui − µ

u
),mxmy + η

)
.

This IW distribution is easy to sample using standard generators.

4.3. Sampling the projected image u

Choosing the conjugate distribution (4) as prior for the projected im-

age u leads to the conditional posterior distribution

u|µ
u
,Σu, s

2, z ∼ N
(
µ

u|z,Σu|z

)
(9)

with

Σ
u|z =

(
Σ

⋆
u

−1 +
∑P

p=1
1
s2p
VF

T
p FpV

T
)−1

µ
u|z = Σ

u|z

(∑P

p=1
1
s2p
VF

T
p zp +Σ

⋆
u

−1
µ⋆

u

)

and µ⋆
u
= (µT

u
· · · µT

u︸ ︷︷ ︸
mxmy

)T ,Σ⋆
u
= diag(Σu · · · Σu︸ ︷︷ ︸

mxmy

).

Note that Σ
u|z is difficult to obtain since Fp is a high-dimensional

matrix and thus inverting the matrix inΣ
u|z is very complicated. As

a consequence, sampling directly from the above distribution is not

possible and makes the standard Gibbs sampler inapplicable here. In

this paper, we propose to use an HMC method to generate vectors

distributed according to the Gaussian distribution (9). More details

about the proposed HMC method are available in [29] and are omit-

ted here for space limitations.

4.4. Sampling the vector of noise variances s2

The conditional distributions of the noise variances s2p for p = 1, 2
are the following inverse-gamma distributions

s2p|u, z ∼ IG

(
Np

2
,

∥∥zp − FpV
T
u
∥∥2

2

)
(10)

which are straightforward to sample.

5. SIMULATION RESULTS

This section studies the performance of the proposed Bayesian fu-

sion algorithm. The reference image, considered here as the high

spatial and high spectral image, is a 128 × 128 × 103 HS image

acquired over Pavia, Italy, by the Reflective Optics System Imaging

Spectrometer (ROSIS). This image was initially composed of 115
bands that have been reduced to 103 bands after removing the water
vapor absorption bands.

5.1. Simulation scenario

We propose to reconstruct the reference HS image u from two HS

and MS images z1 and z2. First, a high-spectral and low-spatial

resolution image z1 (HS image) has been generated by applying a

17 × 17 blurring filter and down-sampling every 4 pixels in both

vertical and horizontal direction on each band of the reference image.

Second, a 4-band MS image z2 is obtained by filtering u with the

IKONOS reflectance spectral responses. The HS and MS images

have been both contaminated by zero-mean additive Gaussian noises

with signal to noise ratios SNR1 = 30dB and SNR2 = 20dB, where

SNRp = 10 log10

(
‖zp‖

2
2

Nps2p

)
for p = 1, 2. A composite color image,

formed by selecting the red, green and blue bands of the reference

image is shown in Fig. 1(a). The noise-contaminated HS and MS

images are depicted in Fig. 1(b) and Fig. 1(c) (the HS image has

been interpolated for better visualization).

To learn the matrix V, we propose to use the principal compo-

nent analysis (PCA). Note that other dimensionality reduction tech-

niques such as [30, 31] could also be used. However, the PCA has
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(a) Reference (b) HS

(c) MS (d) MAP [13]

(e) Wavelet MAP [14] (f) MMSE estimator

Fig. 1. (a) Reference. (b) HS image. (c) MS image. (d) MAP

estimator. (e) Wavelet MAP estimator. (f) Proposed estimator.

been used here for simplicity. Precisely, the dimension of the projec-

tion subspace m̃λ is defined as the minimum integer m̃λ satisfying

the condition (
∑m̃λ

i=1 di)/(
∑mλ

i=1 di) ≥ 0.985 where d1 ≥ d2 ≥
... ≥ dmλ

are the eigenvalues of the sample covariance matrix. For

this example, the first m̃λ = 5 eigenvectors contain 98.5% of the

information.

5.2. Fusion performance

To evaluate the quality of the proposed fusion strategy, different

image quality measures can be investigated. Referring to [14], we

propose to use the reconstruction error (RE), the averaged spectral

angle mapper (SAM) and the universal image quality index (UIQI)

as quantitative measures. The reconstruction error (RE) is related

to the difference between the actual and fused images RE(x, x̂) =

10 log10

(
‖x−x̂‖22
‖x‖2

)
. The smaller RE, the better the fusion and vice

versa. The definition of SAM and UIQI can be found in [14].

Our experiments compare the proposed hierarchical Bayesian

method with two state-of-the-art fusion algorithms for MS and HS

images [13,14]. Fusion results obtained with the different algorithms

are depicted in Fig. 1(d), 1(e) and 1(f). Graphically, the proposed

algorithm performs competitively with the other methods. Quan-

Table 1. Performance of different fusion methods.

Methods RE(dB) UIQI SAM(deg) Time(s)

Hardie -16.534 0.9452 9.0501 0.8

Zhang -17.022 0.9519 8.5039 16.9

Proposed -17.340 0.9558 8.1980 4186.5
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Fig. 2. Noise variances and their MMSE estimates. Top: HS Image

(SNR2 = 30dB). Bottom: MS Image (SNR1 = 30dB).

titative results reported in Table 1 show that the proposed method

slightly outperforms the methods of [13] and [14] (at the price of a

higher computational complexity). This result can be explained by

the fact that the proposed method explicitly exploits the sensor char-

acteristics. Of course this improvement also depends on the nature

of the images to be fused and on the degradation operator. Moreover,

an interesting property of the proposed Bayesian method is that it al-

lows noise variances to be estimated from the samples generated by

the Gibbs sampler. The performance of the MMSE estimator of s21
(resp. s22) for a fixed value of s

2
2 (resp. s

2
1) is illustrated in Fig. 2.

These results show that the noise variances can be estimated with

good performance, especially at high values of the SNRs.

6. CONCLUSIONS

This paper proposed a hierarchical Bayesian model for the fusion of

multispectral and hyperspectral images. The image to be recovered

was assumed to be degraded by physical transformations included

within a forward model. We defined an appropriate prior distribu-

tion exploiting geometrical concepts used for the spectral unmixing

of hyperspectral images. This prior distribution was used to define

a new hierarchical Bayesian fusion model. The posterior distribu-

tion of this model was sampled using a Hamiltonian Monte Carlo

algorithm. Simulations conducted on realistic multispectral and hy-

perspectral images showed that the proposed method gives slightly

better results than two state-of-the-art fusion techniques. These im-

provements can be attributed to the proposed observation model,

which explicitly exploits the sensor characteristics. Moreover, the

proposed method has several advantages: 1) it allows the noise vari-

ances to be estimated jointly with the image to be recovered, 2)

it can be generalized to more complicated fusion models such as

those based on non-Gaussian image priors. Future work includes

the development of similar fusion algorithms accounting for band-

dependent noise variances or/and imperfect knowledge about the lin-

ear operators.
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[26] M. Bouriga and O. Féron, “Estimation of covariance matrices

based on hierarchical inverse-wishart priors,” J. of Stat. Plan-

ning and Inference, 2012.

[27] G. Casella and E. I. George, “Explaining the Gibbs sampler,”

The American Statistician, vol. 46, no. 3, pp. 167–174, 1992.

[28] C. P. Robert, The Bayesian Choice: from Decision-Theoretic

Motivations to Computational Implementation, 2nd ed., ser.

Springer Texts in Statistics. New York, NY, USA: Springer-

Verlag, 2007.

[29] Q. Wei, N. Dobigeon, and J.-Y. Tourneret, “Bayesian fusion of

multi-band images,” arXiv preprint arXiv:1307.5996, 2013.

[30] J. M. Bioucas-Dias and J. M. Nascimento, “Hyperspectral sub-

space identification,” IEEE Trans. Geosci. and Remote Sens.,

vol. 46, no. 8, pp. 2435–2445, 2008.

[31] N. Acito, M. Diani, and G. Corsini, “Hyperspectral signal sub-

space identification in the presence of rare signal components,”

IEEE Trans. Geosci. and Remote Sens., vol. 48, no. 4, pp.

1940–1954, 2010.

3204


