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ABSTRACT
Due to the limited spatial resolution of some remote sensing sen-
sors, their image pixel spectra are commonly mixtures of elemen-
tary contributions. To analyze this type of images, it is necessary for
some applications to perform spectral unmixing. This procedure al-
lows the decomposition of a mixed pixel spectrum into a set of pure
material spectra, and a set of abundance fractions. To this end, we
here propose a new unsupervised spatial Blind Source Separation ap-
proach based on sparsity and geometrical properties. This approach
first consists in finding small zones (composed of several adjacent
pixels) containing only two sources using a spatial correlation-based
method. This stage is followed by an identification stage where we
geometrically estimate the pure material spectra. The final stage is
the estimation of the searched abundances using a non-negative least
squares method. The results obtained for simulated mixtures of re-
alistic sources show the good performance of our method.

Index Terms— Blind Source Separation, Sparse Component
Analysis, spectral unmixing, multispectral images.

1. INTRODUCTION

In space remote sensing, image pixel spectra are commonly mixtures
of elementary contributions (pixels of the data contain contributions
from more than one pure material). To analyze such images, it is
often necessary to perform spectral unmixing. This procedure al-
lows the decomposition of a mixed pixel spectrum into a set of pure
material spectra (called endmembers) and a set of abundance frac-
tions showing the ratio of each endmember in each pixel. To achieve
this goal, we can find in the literature a variety of methods that can
be classified into three main categories: geometrical, statistical and
sparse [1, 2]. Among these methods, many are related to the Blind
Source Separation (BSS) problem, which permits the estimation of
a set of unknown source signals from a set of observed signals sup-
posed to be mixtures of these source signals [3, 4, 5]. Most unmixing
methods are applied to hyperspectral remote sensing images which
have the advantage of providing a large amount of spectral infor-
mation. On the contrary, few of them can be used for multispectral
images because of the limited number of spectral bands with regard
to the number of sources present in the image [6, 7, 8, 9, 10].
Various sparsity-based BSS methods have been developed, either in
the temporal analysis space, or the time-frequency or even time-scale
spaces (see [11, 12, 13, 14] and in particular [15, 16, 17]). Recently,
in [18] the same type of approach as in [15] has been applied to
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multispectral space images. To be applicable, this method needs a
sparsity hypothesis: for each pure material, the multispectral image
must contain a single-source spatial zone (composed of several ad-
jacent pure pixels) where only this material is present.
The sparsity hypothesis upon which this method rests is unfortu-
nately not applicable to certain remote sensing images whose spatial
resolution is too low for them to contain pure pixels and therefore
all the necessary single-source zones for the estimation of each of
the sources. This prompted us to work with a less restrictive as-
sumption that is the presence of some “two-source zones” (zones
containing only two pure materials). In this paper, we propose a new
BSS method for multispectral images, which are more difficult to
unmix than hyperspectral images, as explained above. This method
is based on the detection of two-source zones for the identification of
endmembers. These estimated spectra are then used to unmix each
image pixel using a least squares method with non-negativity and
sum-to-one constraints, and therefore to estimate the searched abun-
dance fractions.
In the second section of this paper, we present the used mixing model
as well as some properties on which our approach is based. The
method is detailed in Section 3. In Section 4, we present some test
results before proceeding to the conclusion in Section 5.

2. DATA MODEL AND PROPERTIES

2.1. Mixing model

We assume that each incident radiation interacts with a single type of
material, which implies a linear mixing model [1]. In this case, after
vectorizing the spatial dimensions, one can express the non-negative
observed reflectance in the `th band from a given pixel n as follows:

x`(n) =

M∑
m=1

r`mfm(n) ∀n = {1 · · ·N} , ` = {1 · · ·L} , (1)

where r`m is the `th component of the mth endmember, fm(n) rep-
resents the abundance fraction of the mth pure material in the nth

pixel, and M is the number of pure materials.
If one considers the N pixels of a multispectral image composed
of L spectral bands, one gets the following matrix expression:
X = RF , where X is the (L × N) observed multispectral image,
the columns of R contain the endmembers and each column of F
contains the abundance fractions of all pure materials in the consid-
ered pixel. In addition, these data meet the following non-negativity
and sum-to-one constraints:

fm(n) ≥ 0, r`m ≥ 0 and
M∑

m=1

fm(n) = 1. (2)
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According to the BSS terminology, the abundance fraction matrix
F and the endmember matrix R will hereafter be respectively called
source and mixing matrices. Given an observation matrixX , we aim
to estimate the matrices R and F .

2.2. Data properties

In the proposed approach, we first focus on pixels containing only
two sources with indices i and j (i 6= j), among all the M sources
considered in the image data. Due to Eq. (1), each such pixel (called
“two-source pixel” hereafter) reads as:

x`(n) = r`ifi(n) + r`jfj(n). (3)

Considering Eq. (3), and taking into account fj(n) = 1 − fi(n)
(due to Eq. (2)), we obtain:

x`(n) = fi(n)[r`i − r`j ] + r`j . (4)

If we now use two spectral bands with indices ` and p (` 6= p), we
obtain for each pixel n a couple of values (x`(n),xp(n)) defining a
point in the (x`, xp) plane. The set of two-source pixels defines a
scatter plot in this plane, and we therefore want to analyse the shape
of this scatter plot. Given Eq. (4), we have:

x`(n)− r`j = fi(n)[r`i − r`j ] (5)
xp(n)− rpj = fi(n)[rpi − rpj ], (6)

which yields:

fi(n)[rpi−rpj ][x`(n)−r`j ]=fi(n)[r`i−r`j ][xp(n)−rpj ]. (7)

Eq. (7) defines a straight line in the (x`, xp) plane. Therefore, let
us assume that only two sources fi(n) and fj(n) are not null every-
where in a spatial zone composed of adjacent pixels (this is called
a “two-source analysis zone” hereafter). Then, all corresponding
points (x`(n),xp(n)) belong to the above-defined line (7). On the
contrary, if more than two sources are non-zero and vary arbitrarily
in a zone, the corresponding points are not on a line. The two-source
line (7) may also be defined by the expression of the 2nd point coor-
dinate with respect to the 1st one, as follows:

xp(n) = ax`(n) + rpj − ar`j , (8)

with: a =
rpi − rpj
r`i − r`j

and r`i 6= r`j .

In addition, the points only belong to a segment of this line, since
0 ≤ fi(n) ≤ 1. The ends of this segment are therefore defined by:
(1) fi(n) = 0:
In this case, we obtain from Eq. (5) and (6), x`(n) = r`j , and
xp(n) = rpj . This is normal, because only source j is present, and
it’s its spectrum that is observed in such a pixel.
(2) fi(n) = 1:
In this case x`(n) = r`i, and xp(n) = rpi.

If we now suppose that there exists in the considered image, at
least one two-source analysis zone for each pair of sources (among
the M sources in the considered image), then we obtain a straight
line for each possible pair of sources. We have a total of M(M−1)

2
possible line segments. These segments have common extremities
corresponding to the M sources. Each of these extreme points has
the following coordinates: [r`m, rpm] (m = {1 · · ·M}).
Figure 1 shows a scatter plot obtained for pixels corresponding to
all pairs of sources selected from an overall set of 4 sources. As

Fig. 1. 2D scatter plot corresponding to two-source pixels

mentioned above, this implies 6 possible lines.

The most difficult case and the one that interests us is when the
points associated with each pair of sources do not cover the whole of
each possible segment, particularly its extremities, which correspond
to pure pixels (see dotted line connecting two line segments in Fig-
ure 1). In this paper, pure pixels are therefore ignored (i.e. they do
not exist, or single-source zones are detected e.g. using the method
from [18] and they are skipped). In this case, assume we have suc-
ceeded in estimating two lines corresponding to two pairs of sources,
with indices [i, j] for the first pair and [j, k] for the second one (with
i 6= k). Assuming these lines are not identical (still for two spec-
tral bands), then we can estimate (for each line), (1) their slopes and
(2) their intercepts. This allows us to deduce their intersection point
and thus obtain the coordinates [r`j , rpj], corresponding to the j th

endmember.
The above analysis considering only two spectral bands is useful to
understand the preliminary version of our approach. However, us-
ing only two bands does not allow us to completely solve the prob-
lem: on the one hand, the obtained intersection points for all pairs
of sources only give us the part of the spectra corresponding to these
two spectral bands (among the L bands considered in the image).
On the other hand, these 2D scatter plots also include spurious line
intersections, i.e. intersections between fully disjoint pairs [i, j] and
[i′, j′] of sources, which do not correspond to actual endmembers
(see point A in Figure 1). Blindly determining all line intersec-
tions would therefore lead to spurious endmembers. This problem
results from the fact that two (non-parallel) lines always intersect in
the 2D space. To solve it, we now extend our approach to L > 2
spectral bands. To this end, it is first necessary to estimate the pa-
rameters of the L-dimensional-space lines associated with each two-
source zone, to classify these parameters, to determine the intersec-
tion points which provide spectra estimates, and finally to estimate
the abundance maps. This is detailed below.

3. PROPOSED UNMIXING METHOD

From the above-discussed properties, we propose a new BSS method
for multispectral remote sensing images. This method is based on
the detection of two-source zones (spatial zones containing only two
sources), classification and some geometrical tools.
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3.1. Two-source zone detection stage

Multispectral images are firstly divided into small adjacent or over-
lapping spatial zones, denoted by ψ (analysis zones). Each two-
dimensional zone consists of adjacent pixels: for example, we can
choose 5 pixel × 5 pixel zones. These analysis zones are then ex-
plored to determine the ones where only two pure materials are
present. For such sought two-source zones, using the zero-mean
versions of the observed signal in bands ` and p, Eq. (5) and (6)
yield:

x̄`(n) = (r`i − r`j)f̄i(n) (9)

x̄p(n) = (rpi − rpj)f̄i(n), (10)

with x̄` = x` − µx` and f̄i = fi − µfi (µx` and µfi represent the
means of x and fi over the considered analysis zone).
We can therefore deduce from Eqs. (9) and (10) , that x̄`(n) et x̄p(n)
vary proportionally over two-source zones.
For each analysis zone, we detect the above proportionality by cal-
culating the cross-correlation coefficients ρx`xp(ψ), between the
centred observed signals in bands ` and p, defined as follows:

ρx`xp(ψ) =
〈x̄`(ψ), x̄p(ψ)〉
‖x̄`(ψ)‖ · ‖x̄p(ψ)‖ ∀`, p = {1 · · ·L} , and ` > p,

(11)
where the column vector x̄`(ψ) contains all centred pixel values
x̄`(n) in the considered analysis zone ψ. ‖x‖ and 〈x, y〉 respec-
tively represent the 2-norm of x and inner product of x and y.
Applying the Cauchy-Schwarz inequality to Eq. (11), shows that:
|ρx`xp(ψ)| ≤ 1, ∀`, p = {1 · · ·L} and ` > p, with equality if and
only if x̄`(ψ) and x̄p(ψ) are linearly dependent.
Then, if in the considered zone, the number of materials is equal to
two, |ρx`xp(ψ)| is high (ideally equal to one). Now, in zones where
more than two sources yield non-zero vectors f̄i(ψ), all |ρx`xp(ψ)|
are significantly lower than one under mild assumptions1.
In practice, for each zone, we calculate the minimum among
|ρx`xp(ψ)| (for all `, p with ` > p). If this measure is greater
than a threshold (experimentally set to 0.996 in our tests), we con-
sider this zone as being a two-source zone.

3.2. Identification stage

This important stage consists in estimating the columns of the mix-
ing matrix. To achieve this goal, we first estimate the L-dimensional
line parameters related to each two-source zone supposedly present
in the considered data (Part I), then we classify all these estimated
parameters which permit us to identify a single line associated with
each pair of sources (Part II). Finally, we calculate the minimum dis-
tance between such lines and obtain the coordinates of the searched
endmembers in the L-dimensional space (Part III).

3.2.1. Part I: Line parameter estimation

To estimate the parameters of a straight line in an L-dimensional
space, we use the following approach. Consider a lineD represented
by the following parametric equation [19, 20]:

ps = su + d, (12)

1These assumptions concern the linear independence of non-zero vectors
f̄i(ψ) and of corresponding shifted mixing matrix columns. These assump-
tions and the effect of constant sources cannot be detailed here, due to space
limitations.

with ps, u and d, L-dimensional column vectors and s a scalar.
We want to estimate u and d to minimize the mean-squared error
between the data points (corresponding to pixels in the considered
two-source zone) and the generated line. Each analysis zone yields
a matrix X(ψ) containing the pixel values x`(n) of the considered
analysis zone, in column ` (with ` = {1 · · ·L}). One of the possible
solutions for fitting a line to data points is to determine the first prin-
cipal axis of these data. To this end, we use the following estimate
[19, 20]:
(1) d = mean of the columns of XT (ψ), corresponding to the center
of gravity of these data (where T stands for transpose).
(2) u = eigenvector associated with the largest eigenvalue of the co-
variance matrix of X(ψ).
However, when fitting a model to data, it is important that there are
no mutually dependent (redundant) parameters in this model. Oth-
erwise, the solution of the fitting procedure is not unique. In Eq.
(12), the line is defined by 2L parameters, i.e., the components of u
and d. However, this overspecifies the line because a line in an L-
dimensional space can be defined by 2L− 2 parameters as follows,
provided it is not orthogonal to the first axis, i.e. provided the first
component u1 of u is non-zero. Components 1 and ` of Eq. (12)
read:

p1 = su1 + d1 and p` = su` + d`, with ` = {2 · · ·L} .

From this we obtain:
p1 − d1
u1

=
p` − d`
u`

= s,

which yields: p` =
u`

u1
p1 + d` −

u`

u1
d1,

that is:
p` = u`

∗p1 + d`
∗, (13)

where the 2L− 2 normalized parameters are defined as:

u`
∗ =

u`

u1
and d`∗ = d` −

u`

u1
d1. (14)

Eq. (13) and (14) also apply to ` = 1, by introducing u1
∗ = 1 and

d1
∗ = 0. Gathering all L components u`

∗ (resp. d`∗) in a vector u∗
(resp. d∗), Eq. (13) defining the considered line may be written in
vector form as:

ps∗ = s∗u∗ + d∗, with s∗ = p1.

For the sake of readability, s∗ is denoted as s in Section 3.2.3.

3.2.2. Part II: Classification of line parameter vectors

For each pair of sources, the above part yields several couples of
vectors u∗ and d∗, i.e. one couple for each analysis zone only con-
taining these two sources. We then aim at deriving a single couple
(u∗, d∗) for each pair of sources. To this end, we re-arrange each
estimated couple (u∗, d∗) as an overall vector and we classify these
vectors by successively using each of them as follows. After set-
ting the first vector to a first class denoted by “class-1”, each vector
is compared to this class by computing the distance between them,
i.e. the 2-norm of their difference. Whenever this distance is less
than a threshold (experimentally set to 10-4 in our tests), we assign
the tested vector to the first class. Otherwise, we create a new class
(“class-2”) and assign this vector to it. Then, we compare the subse-
quent vectors with those defining the already existing classes. Each
tested vector is assigned to the closest class or defines a new class if
it is too far from all existing classes. Once this classification stage is
complete, we estimate a unique line for each class by repeating the
line parameter estimation procedure described in Part I, but using a
new matrix X(ψ) containing all the pixel values corresponding to
that class.
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3.2.3. Part III: Computing minimum-distance points between two
lines

This last part is the most important one in the identification stage.
The coordinates of each endmember (column of the mixing ma-
trix) are derived by estimating the intersection points of two lines
corresponding to two pairs of sources. This is feasable under the
assumption that there exists a common point between each pair of
lines. In theory, this condition is met if the considered two pairs of
sources share one source. In practice, however, it is possible that
two estimated lines do not exactly intersect due to data noise. In
this case, the endmember coordinates may be estimated by comput-
ing the minimum-distance points between two lines. Hereafter, we
show how to calculate the minimum distance between two lines in an
L-dimensional space. This is achieved by finding two points, psC

on
the lineD1 and qtC

on another lineD2, where this minimum occurs
[21]. D1 and D2 are defined respectively by:

ps = su∗ + d∗ and qt = tv∗ + e∗. (15)

w(s,t) = ps − qt is a given vector between two points on the two
lines. We want to find the w(sC , tC ) (hereafter denoted wC ) that
has a minimum length among all s and t. To this end, we have to
find the line segment (psC qtC ) joining these points and which is
simultaneously perpendicular to the two lines D1 and D2 [21]. In
other words, the vector wC is perpendicular to the direction-vectors
u∗ and v∗, and this is equivalent to satisfy (1) u∗T wC = 0 and (2)
v∗T wC = 0.
We can easily solve this couple of equations by replacing wC by
psC
− qtC

(with w0 = d∗ − e∗), which yields:

(u∗T u∗)sC − (u∗T v∗)tC = −u∗T w0

(v∗T u∗)sC − (v∗T v∗)tC = −v∗T w0.

Then, by denoting a1 = u∗T u∗, a2 = u∗T v∗, a3 = v∗T v∗,
a4 = u∗T w0, and a5 = v∗T w0, we obtain:

sC =
a3a4 − a5a2
a22 − a1a3

, and tC =
a2a4 − a1a5
a22 − a1a3

, with a22−a1a3 6= 0.

Eq. (15) then yields the points psC and qtC on the two lines D1 and
D2, where they are the closest to each other. If the minimum dis-
tance between the two lines d(D1, D2) =

∥∥psC
− qtC

∥∥ is less than
a threshold (experimentally set to 10-3 in our tests), the means of the
coordinates of psC

and qtC
are retained as one of the columns of the

sought mixing matrix. This is repeated for all the other intersection
points.

3.3. Extraction stage

After estimating the spectrum of each pure material, we undertake
the final part of our method, which consists in extracting the M
abundance maps (sources) that are present in the considered data. To
this end, we apply the Non-negative Least Squares (NLS) method to
each pixel of the considered data [22]. It should be noted that in or-
der to satisfy the sum-to-one constraint defined by Eq. (2), we add to
the observation and spectra matrices, a row consisting of a positive
constant value [23]. Besides, our overall BSS method is applica-
ble to mixtures which are underdetermined over the complete image
(L < M ), provided these mixtures remain (over)determined in each
pixel.

4. TEST RESULTS

To evaluate the performance of our method, we compare the esti-
mated and actual sources using the normalized root mean square
error (NRMSE). For the mixing matrix, we use the spectral angle
mapper (SAM in degrees). These criteria are defined by:

NRMSE (of the sources) =
‖real - estimated‖

‖real‖
SAM (of the mixing matrix) = arccos(

〈real,estimated〉
‖real‖·‖estimated‖ ).

A dataset of 8 realistic sources (80×80-pixel abundance fraction
maps, cf. Figure 2) was created from a real classification of land
cover (see [18] for details). The observed image was generated by
linear combinations of these sources (Eq. (1)) and using random
spectra composed of four samples (mixing matrix). The used image
was also corrupted by an additive white noise (with 60 dB-SNR). We
then applied our method to separate these mixtures. Table 1 shows
the results obtained using (a) the proposed method and (b) the clas-
sical SMACC method [6] (implemented in a standard commercial
image processing software). As can be noted, our method yields
much better average performance than SMACC, and only SMACC
completely fails for some sources (s3 and s7).

Table 1. Obtained results using: (a) our method, (b) SMACC
s1 s2 s3 s4 s5 s6 s7 s8 mean

a NRMSE 0.029 0.016 0.054 0.003 0.019 0.015 0.229 0.009 0.041
SAM 0.014 0.059 0.199 0.099 0.011 0.328 0.817 0.043 0.174

b NRMSE 0.047 0.062 0.900 0.026 0.101 0.015 1.183 0.075 0.267
SAM 0.103 0.112 12.51 0.021 0.079 0.079 11.48 0.081 2.719

Fig. 2. The eight realistic sources used in our tests

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new unsupervised BSS approach based
on spatial sparsity for multispectral images. The proposed approach
consists of three stages: (i) determining all the two-source zones
present in the considered data using a correlation-based detector,
(ii) identifying the columns of the mixing matrix from the inter-
sections of the lines generated by the two-source zones, and finally
(iii) reconstructing the searched sources using a non-negative least
squares method. We experimentally validated the effectiveness of
our method using simulated mixtures of realistic sources and we ob-
tained very attractive results. Our future investigations will be de-
voted to extending our method to spatial unmixing of hyperspectral
images. Other classification and two-source zone detection methods
will also be explored.
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