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ABSTRACT

This paper presents a nonlinear mixing model for joint hyperspectral
image unmixing and nonlinearity detection. The proposed model as-
sumes that the pixel reflectances are linear mixtures of endmembers,
corrupted by an additional nonlinear term and an additive Gaussian
noise. A Markov random field is considered for nonlinearity de-
tection based on the spatial structure of the nonlinear terms. The
observed image is segmented into regions where nonlinear terms, if
present, share similar statistical properties. A Bayesian algorithm is
proposed to estimate the parameters involved in the model yielding a
joint nonlinear unmixing and nonlinearity detection algorithm. Sim-
ulations conducted with synthetic and real data show the accuracy
of the proposed unmixing and nonlinearity detection strategy for the
analysis of hyperspectral images.

Index Terms— Hyperspectral imagery, nonlinear spectral un-
mixing, residual component analysis, nonlinearity detection.

1. INTRODUCTION

Spectral unmixing (SU) of hyperspectral images has attracted grow-
ing interest over the last few decades. It consists of distinguishing
the materials and quantifying their proportions in each pixel of the
observed image. The SU problem has been widely studied for the ap-
plications where pixel reflectances are linear combinations of pure
component spectra [1, 2]. However, as explained in [2], the linear
mixing model (LMM) can be inappropriate for some hyperspectral
images, such as those containing sand-like materials or relief. Non-
linear mixing models (NLMMs) provide an interesting alternative to
overcoming the inherent limitations of the LMM. They have been
proposed in the hyperspectral image literature and can be divided
into two main classes [3]. The first class of NLMMs consists of
physical models based on the nature of the environment (e.g., in-
timate mixtures [4] and multiple scattering effects [5, 6, 7]). The
second class of NLMMs contains more flexible models allowing
different kinds of nonlinearities to be approximated. These flexi-
ble models can be constructed from neural networks, kernels [8], or
post-nonlinear transformations [9].

While the consideration of nonlinear effects can be relevant in
specific areas, the LMM is often sufficient for approximating the ac-
tual mixing models in some image pixels or homogeneous regions.
Consequently, it makes sense to distinguish in any image, linearly
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mixed pixels which can be easily analyzed, from those nonlinearly
mixed requiring deeper analysis. Conversely to the nonlinearity de-
tector studied in [10], this paper proposes to simultaneously achieve
SU and nonlinearity detection. Moreover, the consideration of spa-
tial structures in the image, used in [11] for linear SU, is investigated
to infer the locations where nonlinear effects occur. The algorithm
proposed in this paper is supervised in the sense that the endmembers
contained in the image are assumed to be known. This algorithm is
based on a nonlinear mixing model inspired from residual compo-
nent analysis (RCA) [12]. In the context of SU of hyperspectral
images, the nonlinear effects are modeled by additive perturbation
terms characterized by Gaussian processes (GPs). This allows the
nonlinear terms to be marginalized, yielding a flexible model de-
pending only on the nonlinearity energies. The hyperspectral image
to be analyzed is partitioned into homogeneous regions in which the
nonlinearities share the same GP. The proposed algorithm relies on
an implicit image classification, modeled by labels whose spatial de-
pendencies follow a Potts-Markov random field. Consideration of
two classes (linear vs. nonlinear mixtures) would lead to binary de-
tection maps. However, this paper allows for several nonlinearly
mixed regions to be also identified, based on the energy of the non-
linear effects.

The remaining paper is organized as follows. Section 2 intro-
duces the RCA model for hyperspectral image analysis, followed by
Section 3 which summarizes the likelihood and the priors assigned
to the parameters of the linear part of the RCA model. Section 4
is devoted to the priors associated with the nonlinear terms of the
RCA model. The posterior distribution of the RCA model and the
Metropolis-Within-Gibbs sampler used to sample from it are sum-
marized in Section 5. Some simulation results conducted on real
data are shown and discussed in Section 6. Conclusions and future
work are finally reported in Section 7.

2. PROBLEM FORMULATION

We consider a set of N observed pixel spectra yn ∈ RL, n ∈
{1, . . . , N} where L is the number of spectral bands. Each of these
spectra is defined as a linear combination of R known spectra mr ,
referred to as endmembers, contaminated by an additional spectrum
φn and additive noise

yn =
R∑

r=1

ar,nmr + φn + en

= Man + φn + en, n = 1, . . . , N (1)

where mr = [mr,1, . . . ,mr,L]T is the spectrum of the rth mate-
rial present in the scene, ar,n is its corresponding proportion (abun-
dance) in the nth pixel. In (1), en is an additive independently
and non identically distributed zero-mean Gaussian noise sequence
with diagonal covariance matrix Σ0 = diag

(
σ2
)
, denoted as en ∼
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N (0L,Σ0), where σ2 = [σ2
1 , . . . , σ

2
L]T is the vector of the L noise

variances and diag
(
σ2
)

is an L× L diagonal matrix containing the
elements of the vector σ2. Note that the usual matrix and vector
notations M = [m1, . . . ,mR] and an = [a1,n, . . . , aR,n]T have
been used in the second row of (1). Moreover, the term φn ∈ RL

in (1) is an unknown additive perturbation vector modeling nonlin-
ear effects occurring in the nth pixel. There are several motivations
for considering the mixing model described by (1): i) the model re-
duces to the classical linear mixing model (LMM), for φn = 0L,
ii) the model is general enough to handle different of kinds of non-
linearities such as the bilinear model studied in [13] (referred to as
Fan model (FM)), the generalized bilinear model (GBM) [7], and
the polynomial post-nonlinear mixing model (PPNMM) studied for
nonlinear spectral unmixing in [9] and nonlinearity detection in [10].
These models assume that the mixing model consists of a linear con-
tribution of the endmembers, corrupted by at least one additive term
characterizing the nonlinear effects. In the proposed model, all addi-
tive terms are gathered in the vector φn. Note that a similar model,
called robust LMM, has been recently introduced in [14].

Due to physical considerations, the abundance vectorsan satisfy
the following positivity and sum-to-one constraints

R∑
r=1

ar,n = 1, ar,n > 0, ∀r ∈ {1, . . . , R} . (2)

The problem addressed in this paper consists of the joint estimation
of the abundance vectors and detection of nonlinearly mixed pixels
(characterized byφn 6= 0L). The next sections present the proposed
Bayesian model for joint unmixing and nonlinearity detection.

3. BAYESIAN LINEAR MODEL

The unknown parameter vector associated with the proposed model
(1) contains the abundances A = [a1, . . . ,aN ], the nonlinear terms
of each pixel {φn}n=1,...,N , and the noise variance vector σ2. This
section presents the likelihood and the parameter priors associated
with the parameters of the linear part of the model, i.e., A and σ2.
The characterization of the nonlinearities will be addressed later in
Section 4.

3.1. Likelihood

Eq. (1) shows that yn|M,an,φn,σ
2 ∼ N (Man + φn,Σ0). As-

suming independence between the observed pixels, the likelihood of
the observation matrix Y = [y1, . . . ,yN ] can be expressed as
f(Y|M,A,Φ,σ2)

∝ |Σ0|−N/2etr

[
− (Y −X)TΣ−1

0 (Y −X)

2

]
(3)

where ∝ means “proportional to”, etr(·) denotes the exponential
trace, X = MA + Φ is an L×N matrix and Φ = [φ1, . . . ,φN ]T

is an L×N nonlinearity matrix.

3.2. Prior for the abundance matrix A

Each abundance vector can be written as1 an = [cT
n , aR,n]T

with cn = [a1,n, . . . , aR−1,n]T and aR,n = 1 −
∑R−1

r=1 ar,n.
The LMM constraints (2) impose that cn belongs to the sim-
plex S =

{
c
∣∣∣cr > 0, ∀r ∈ 1, . . . , R− 1,

∑R−1
r=1 cr < 1

}
. To

reflect the lack of prior knowledge about the abundances, a uni-
form prior is assigned for each vector cn, n ∈ {1, . . . , N}, i.e.,

1In this paper, the sum-to-one constraint is considered for the abundances.
However, this constraint can be relaxed. An extended algorithm (without
abundance sum-to-one constraint) has been proposed and studied in [15].

f(cn) ∝ 1S (cn), where 1S (·) is the indicator function defined
on the simplex S. Assuming prior independence between the N
abundance vectors {an}n=1,...,N leads to the following joint prior
distribution f(C) =

∏N
n=1 f(cn), where C = [c1, . . . , cN ] is an

(R− 1)×N matrix.

3.3. Prior for the noise variances

A Jeffreys’ prior is chosen for the noise variance of each spectral
band σ2

` , i.e., f(σ2
` ) ∝ σ−2

` 1R+

(
σ2
`

)
, which reflects the absence of

knowledge for this parameter (see [16] for motivations). Assuming
prior independence between the noise variances, we obtain f(σ2) =∏L

`=1 f(σ2
` ).

4. MODELING THE NONLINEARITIES

We propose in this paper to exploit spatial correlations between the
pixels of the hyperspectral image to be analyzed. It seems reasonable
to assume that nonlinear effects occurring in a given pixel are related
to the nonlinear effects present in neighboring pixels. Formally, the
hyperspectral image is assumed to be partitioned into K classes de-
noted as C0, . . . , CK−1. Let Ik ⊂ {1, . . . , N} denote the subset of
pixel indexes belonging to the kth class (k = 0, . . . ,K − 1). An
N × 1 label vector z = [z1, . . . , zN ]T with zn ∈ {0, . . . ,K − 1}
is introduced to identify the class of each image pixel, i.e., yn ∈
Ck ⇔ n ∈ Ik ⇔ zn = k. In each class, the unknown nonlinearity
vectors are assumed to share the same statistical properties, as will
be shown in the sequel.

4.1. Prior distribution for the nonlinearity matrix Φ

As mentioned above, the mixing model (1) reduces to the LMM
for φn = 0L. For nonlinearity detection, it makes sense to con-
sider a pixel class (referred to as class C0) corresponding to linearly
mixed pixels. The resulting prior distribution for φn conditioned
upon zn = 0 is given by f(φn|zn = 0) =

∏L
`=1 δ(φ`,n).

Nonlinear effects can vary, depending on the relief of the scene,
the underlying components involved in the mixtures and the obser-
vation conditions to name a few factors. This makes the choice of
a single informative prior distribution challenging. From a classifi-
cation point of view, it is interesting to identify regions or classes
where similar nonlinearities occur. For these reasons, we propose
to divide nonlinearly mixed pixels into K − 1 classes and to assign
different priors for the nonlinearity vectors belonging to the different
classes. In this paper, the nonlinearities associated with nonlinearly
mixed pixels are assumed to be random. Assuming yn belongs to
the kth class, the prior distribution of the corresponding nonlinear
term φn is given by the following GP (k = 1, . . . ,K − 1)

φn|M, zn = k, s2k ∼ N
(
0L, s

2
kKM

)
, (4)

where KM is an L×L covariance matrix parameterized by the end-
member matrix M and s2k is a scaling hyperparameter that tunes
the energy of the nonlinearities in the kth class. Note that all non-
linearity vectors within the same class share the same prior. It has
been shown that polynomial models (i.e., models involving polyno-
mial nonlinearities with respect to the endmembers) are particularly
well adapted to model scattering effects, mainly observed in vegeta-
tion and urban areas. Consequently, it makes sense to assume that
the nonlinearities φn depend on the endmember matrix M. In this
paper, we consider the similarity matrix of symmetric second order
polynomial kernel. This kernel is defined as follows

[KM]i,j =
(
mT

i,:mj,:

)2
, i, j ∈ {1, . . . , L} , (5)
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where mi,: denotes the ith row of M. Note that the parametrization
of the matrix KM in (5) only involves bilinear and quadratic terms
with respect to the endmembers. Note also that a polynomial kernel
similar to (5) has been recently considered in [8] and that other ker-
nels such as the Gaussian kernel could be investigated to model other
nonlinearities as in [12]. As mentioned above, the endmembers of
the scene are assumed to be known in this paper. Consequently, the
proposed nonlinear model does not involve endmember estimation
errors (i.e., missing or poorly estimated endmembers).

4.2. Prior distribution for the label vector z

To exploit the correlation between pixels, a Markov random field is
introduced as a prior distribution for zn given its neighbors zV(n),
i.e., f(zn|z\n) = f(zn|zV(n)), where V(n) is the neighborhood
of the nth pixel and z\n = {zn′}n′ 6=n. More precisely, this paper
focuses on the Potts-Markov model since it is appropriate for hyper-
spectral image segmentation [11]. Given a discrete random field z
attached to an image with N pixels, using the Hammersley-Clifford
theorem, we obtain f(z) = G(β)−1 exp[β

∑N
n=1

∑
n′∈V(n) δ(zn−

zn′)], where β > 0 is the granularity coefficient, G(β) is a normal-
izing (or partition) constant and δ(·) is the Dirac delta function.
Several neighborhood structures can be employed to define V(n).
In the rest of the paper, a second-order neighborhood will be con-
sidered. The hyperparameter β tunes the degree of homogeneity of
each region in the image. More precisely, small values of β yield
an image with a large number of regions, whereas large values of
β lead to fewer and larger homogeneous regions. In this paper, the
granularity coefficient is assumed to be known. Note however that
it could be also included within the Bayesian model and estimated
using the strategy described in [17].

4.3. Hyperparameter priors

The performance of the proposed Bayesian model for spectral un-
mixing depends on the values of the hyperparameters

{
s2k
}
k=1,...,K

.
When the hyperparameters are difficult to adjust, it is the norm to
include them in the unknown parameter vector, resulting in a hier-
archical Bayesian model [18, 9]. This strategy requires the defini-
tion of prior distributions for the hyperparameters. Inverse-gamma
prior distributions are assigned to the nonlinearity hyperparameters
(i.e., s2k|γ, ν ∼ IG(γ, ν),∀k ∈ {1, . . . ,K}), where the additional
parameters (γ, ν) are fixed to ensure a noninformative prior for s2k
((γ, ν) = (1, 1/4) in all simulations presented in this paper). As-
suming prior independence between the hyperparameters, we obtain
f(s2|γ, ν) =

∏K−1
k=1 f(s2k|γ, ν), where s2 = [s21, . . . , s

2
K ]T .

5. BAYESIAN INFERENCE USING A
METROPOLIS-WITHIN-GIBBS SAMPLER

Assuming prior independence between A, (Φ, z) and σ2, the pos-
terior distribution of (Φ,θ) where θ = (C, z,σ2, s2) can be
expressed as f(θ,Φ|Y,M) ∝ f(Y|M,θ,Φ)f(Φ|M, z, s2)f(θ),
where f(θ) = f(C)f(σ2)f(z)f(s2). This distribution can
be marginalized with respect to Φ, leading to f(θ|Y,M) ∝
f(θ)f(Y|M,θ) where

f(Y|M,θ) =

∫
f(Y|M,θ,Φ)f(Φ|M, z, s2)dΦ (6)

∝
K−1∏
k=0

∏
n∈Ik

1

|Σk|
1
2

exp

[
−1

2
ȳT

nΣ−1
k ȳn

]
with Σk = s2kKM+Σ0 (k = 1, . . . ,K−1) and ȳn = yn−Man.
The advantage of this marginalization is to avoid sampling the matrix

Φ. Thus, the nonlinearities are fully characterized by the known
endmember matrix, the class labels and the values of s2.

To overcome the challenging derivation of the Bayesian esti-
mators associated with f(θ|Y,M), we propose to use an efficient
Markov Chain Monte Carlo (MCMC) method to generate samples
asymptotically distributed according to f(θ|Y,M). More precisely,
we consider a hybrid Gibbs sampler described in the next part of this
section. The principle of the Gibbs sampler is to sample according
to the conditional distributions of the posterior of interest [19, Chap.
10]. In this paper, we propose to sample sequentially the N labels
in z, the abundance matrix A, the noise variances σ2 and s2 using
moves that are summarized below (see [15] for further details).
Labels: Sampling zn from its conditional distribution can be
achieved by drawing a discrete value in the finite set {0, . . . ,K−1}
with known probabilities.
Abundances: The conditional distribution of cn|yn,M, zn =
k, s2k,σ

2 is a multivariate Gaussian distribution restricted to the
simplex S, which can be sampled efficiently using the method
recently proposed in [20].
Noise variance σ2

` : Sampling σ2
` from its conditional distribution is

not straightforward. We propose to use an accept/reject procedure
to update σ2

` . In this paper, a classical Gaussian random walk (in
the log-space) is used. Note that the noise variances are a posteriori
independent and can thus be updated in a parallel manner. Note
also that the variances of the L parallel Gaussian random walks have
been adjusted during the burn-in period of the sampler to obtain an
acceptance rate close to 0.5, as recommended in [21, p. 8].
Hyperparameter s2k: Due to the complexity of the conditional dis-
tribution of s2k|Y,A, z,σ2, Gaussian random walks are again used
in the log-space to update the hyperparameters {s2k}k=1,...,K−1

(similarly to the noise variance updates). Again, the variances of
the random walks have been adjusted during the burn-in period of
the sampler. The reader is invited to consult [15] for further details
about the proposed sampler.

After generating NMC samples using the proposed MCMC
method and removing Nbi iterations associated with the burn-in
period of the sampler (Nbi has been set from preliminary runs), the
marginal maximum a posteriori (MAP) estimator of the label vector,
denoted as ẑMAP, can be computed. The label vector estimator is
then used to compute the minimum mean square error (MMSE) of
A conditioned upon z = ẑMAP. Finally, the noise variances and the
hyperparameters {s2k}k=1,...,K−1 are estimated using the empirical
averages of the generated samples (MMSE estimates) conditionally
to z = ẑMAP.

6. SIMULATIONS: REAL HYPERSPECTRAL IMAGE

The performance of the proposed algorithm has first been evaluated
using synthetic data. Due to length limitations, these simulations
have been included in a technical report [15]. This section studies
the performance of the proposed algorithm for a real hyperspectral
image. The real image was acquired in 2010 by the Hyspex hyper-
spectral scanner over Villelongue, France (00◦03’W and 42◦57’N).
L = 160 spectral bands were recorded from the visible to near in-
frared with a spatial resolution of 0.5m. This dataset has already
been studied in [22, 23] and is mainly composed of forested and ur-
ban areas. More details about the data acquisition and pre-processing
steps are available in [22]. A sub-image (of size 41 × 29 pixels) is
chosen here to evaluate the proposed unmixing procedure and is de-
picted in Fig. 2 (a). The scene is composed mainly of roof, road and
grass pixels, resulting in R = 3 endmembers. The spectral signa-
tures of these components have been extracted from the data using
the N-FINDR algorithm [24].
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Different mixing models and estimation algorithms have been
tested on this real image: 1) The FCLS algorithm [1] which is known
to have good performance for linear mixtures, 2) The GBM-based
approach [25] which is particularly adapted for bilinear nonlineari-
ties, 3) The gradient-based approach of [9] which is based on a PP-
NMM and has shown nice properties for various nonlinear models,
4) The proposed RCA-SU algorithm which is based on the model
(1). Note that the RCA-SU algorithm has been run with NMC =
3000, Nbi = 2000, K = 4 and β = 1.2. This value of β was
selected from preliminary runs but could have been estimated, as in
[17]. Finally, we consider 5) the K-Hype method [8] to compare our
algorithm with a state-of-the art kernel based unmixing method. The
kernel used in this paper is the polynomial, second order symmetric
kernel whose Gram matrix is defined by (5). This kernel provides
better performance on this data set than the kernels studied in [8].
All hyperparameters of the K-Hype algorithm have been optimized
using preliminary runs.

The abundance maps estimated by the RCA-SU algorithm and
available in [15] are graphically in good agreement with the state-of-
the art algorithms. However, Table 1 shows that K-Hype and the pro-
posed algorithm provide a lower reconstruction error (RE) defined

by RE =
√

(
∑

n ‖ŷn − yn‖2)/(NL), where yn is the nth obser-
vation vector and ŷn its estimate. Since no ground truth is available
for this data set, it is difficult to evaluate if K-Hype or the algo-
rithm proposed in this paper provides the best abundance estimates.
However, the simulation results from synthetic data [15] show that
the RCA-SU generally provides better results. Fig. 1 compares the
noise variances estimated by the RCA-SU for the real image with
the noise variances estimated by the HySime algorithm [26]. The
HySime algorithm assumes additive noise and estimates the noise
covariance matrix of the image using multiple regression. Fig. 1
shows that the two algorithms provide similar noise variance esti-
mates. These results motivate the consideration of non i.i.d. noise
for hyperspectral image analysis since the noise variances increase
for the highest wavelengths.

Table 1. REs(×10−2).
FCLS GBM PPNMM K-HYPE RCA-SU
0.65 0.65 0.54 0.48 0.48

Fig. 1. Noise variances estimated by the RCA-SU (red) and the
Hysime algorithm (blue) for the real Madonna image.

Fig. 2 (b) shows the detection map (map of zn for n =
1, . . . , N ) provided by the proposed RCA-SU detector for the real
image considered. Since no ground truth is available for this data
set, in contrast to the synthetic data considered in [15], it is difficult
to quantitatively assess the performance of the proposed nonlinearity
detector. However, the detection map highlights structures that can
also be identified in the true color image of the scene (Fig. 2 (a)).
Due to the consideration of spatial structures, the proposed detec-
tor provides homogeneous regions. The estimated class C0 (black

pixels) associated with linearly mixed pixels is mainly located in
the roof region. The class C1 (dark grey pixels) can be related to
regions where the main components in the pixels are grass or road.
Mixed pixels composed of grass and road are gathered in class C2
(light grey pixels). Finally, shadowed pixels located between the
roof and the road are associated with the last class C3 (white pix-
els). Moreover, the RCA-SU algorithm can identify three levels
of nonlinearity, corresponding to [ŝ21, ŝ

2
2, ŝ

2
3] = [0.03, 0.50, 29.5].

The most influent nonlinearity class is class C3, where shadowing
effects occurs. Mixed pixels of class C2 contain weaker nonlineari-
ties. Finally, the remaining pixels of class C1 are associated with the
weakest nonlinearities. The nonlinearities of this class can probably
be explained by the endmember variability and/or the endmember
estimation error. It is interesting to note that the RCA-SU algorithm
identifies two rather linear classes associated with homogeneous
regions mainly composed of a single parameter (classes C0 and C1).
The two other classes (C2 and C3) correspond to rather nonlinear
regions where the pixels are mixed and shadowing effects occur.

(a) (b)

Fig. 2. (a) True color image of the scene of interest. (b) Nonlinearity
detection map obtained with the RCA-SU detector for the Madonna
image.

7. CONCLUSION

We have proposed a new hierarchical Bayesian algorithm for joint
linear/nonlinear spectral unmixing of hyperspectral images and non-
linearity detection. The nonlinear mixtures were decomposed into
a linear combination of the endmembers and an additive term rep-
resenting the nonlinear effects. A Markov random field was intro-
duced to promote spatial structures in the image. The image was
decomposed into regions or classes where the nonlinearities share
the same statistical properties defined by Gaussian processes, each
class being associated with a level of nonlinearity. An important ad-
vantage of the proposed algorithm with respect to other strategies is
the possibility of detecting several kinds of linearly and nonlinearly
mixed pixels. This detection can be used to identify the image re-
gions affected by different nonlinearities in order to characterize the
nonlinear effects more deeply.

The performance of the algorithm relies on the endmember
knowledge (endmembers assumed to be known in this paper). Es-
timating the pure component spectra present in the image, jointly
with the abundance estimation and the nonlinearity detection is an
important issue that should be considered in future work. Finally,
estimating the number of classes and the granularity of the scene is
clearly a challenging issue that we plan to investigate.
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