
CSIT ESTIMATION AND FEEDBACK FOR FDD MULTI-USER MASSIVE MIMO SYSTEMS

Xiongbin Rao�, Vincent K.N. Lau�, and Xiangming KONG†

�Department of ECE, the Hong Kong University of Science and Technology, Hong Kong
† Huawei Technologies CO., LTD., P.R. China

ABSTRACT
To fully utilize the spatial multiplexing gains or array gains of mas-
sive MIMO, the channel state information must be obtained at the
transmitter side (CSIT). However, conventional CSIT estimation ap-
proaches are not suitable for FDD massive MIMO systems because
of the overwhelming training and feedback overhead. In this paper,
we consider multi-user massive MIMO systems and deploy the com-
pressive sensing (CS) technique to reduce the training as well as the
feedback overhead in the CSIT estimation. We propose a distributed
compressive CSIT estimation and feedback scheme to exploit the
hidden joint sparsity structure in the user channel matrices and we
obtain simple insights into how the joint channel sparsity can be ex-
ploited to improve the CSIT recovery performance.

Index Terms— Massive MIMO, CSIT estimation and feedback,
compressive sensing (CS).

1. INTRODUCTION

Massive MIMO can greatly enhance the wireless communication ca-
pacity due to the increased degrees of freedom, and there is intense
research interest in the applications of massive MIMO in next gen-
eration wireless systems [1]. To fully utilize the spatial multiplexing
gains and the array gains of massive MIMO [2], knowledge of chan-
nel state information at the transmitter (CSIT) is essential. In TDD
massive MIMO systems, the CSIT can be obtained by exploiting
the channel reciprocity using uplink pilots [1]. Hence, many works
have considered massive MIMO of TDD systems [1,3]. On the other
hand, as FDD is generally considered to be more effective for sys-
tems with symmetric traffic and delay-sensitive applications [4] and
the most cellular systems today employ FDD, it is also of great inter-
est to consider massive MIMO of FDD systems [5]. To obtain CSIT
at the base station (BS) of FDD systems, conventional works [6–8]
require the BS first transmits downlink pilot symbols so that the user
can estimate the downlink CSI locally using the least square (LS) [8]
or minimum mean square error (MMSE) [7]. The estimated CSI
are then fedback to the BS via uplink signaling channels. However,
using these conventional CSI estimation techniques, the number of
independent pilot symbols required at the BS has to scale linearly
with the number of transmit antennas M at the BS (i.e. O(M)).
For massive MIMO, as M becomes very large, the pilot training
overhead (downlink) as well as the CSI feedback overhead (uplink)
would be prohibitively large. In addition, the number of independent
pilot symbols available is limited by the channel coherence time [1].
Hence, a new CSIT estimation and feedback design will be needed
to support FDD massive MIMO systems.

In massive MIMO systems, as has been identified by many ex-
perimental studies [9,10], the user channel matrices tend to be jointly
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sparse due to the shared and limited local scatterers [11]. Hence, it
is desirable to exploit the hidden joint sparsities in the CSIT esti-
mation and feedback process. In [12], a CS-based channel estima-
tion method is proposed to exploit the sparse multipath channels in
time, frequency as well as spatial domains in MIMO systems. By
exploiting the spatial sparsity using CS in massive MIMO systems,
it is shown that only O(s logM) training1 overhead [12] is needed
and this represents a substantial reduction of the CSIT estimation
overhead compared with the conventional LS approach. However,
these works [12,13] have considered the point-to-point system only.
There are several first order technical challenges associated with the
extension of the existing CS-based CSIT estimation techniques to
multi-user massive MIMO systems of FDD systems.

• How to exploit the joint channel sparsity among different
users distributively. In multi-user massive MIMO systems,
the user channel matrices may be jointly sparse if they share
common local scattering clusters [9,10], as illustrated in Fig-
ure 2. Therefore, it is highly desirable to exploit not only the
per-link channel sparsity but also the joint sparsity structure
to further reduce the CSIT estimation and feedback overhead.

• Tradeoff analysis between the CSIT estimation quality
and the joint channel sparsity. Besides the algorithm devel-
opment challenge above, it is also desirable to obtain design
insights into how the joint channel sparsity can affect the
CSIT estimation performance.

Notations: Uppercase and lowercase boldface letters denote
matrices and vectors respectively. The operators (·)H , (·)†, | · |,
I{·}, �·�F , O(·), o(·) and Pr(·) are the conjugate transpose, Moore-
Penrose pseudoinverse, cardinality, indicator function, Frobenius
norm, big-O notation, little-o notation, and probability operator re-
spectively; supp(h) is the index set of the non-zero entries of vector
h; AΩ and AΩ denote the sub-matrices formed by collecting the
columns and rows, respectively, ofA whose indexes are in set Ω.

2. SYSTEMMODEL

2.1. Multi-user Massive MIMO System

Consider a flat block-fading multi-user massive MIMO system op-
erating in FDD mode. There is one BS and K users in the network
as illustrated in Figure 1, where the BS hasM antennas (M is large)
and each user hasN antennas. To estimate the downlink CSI, the BS
broadcasts a sequence of T training pilot symbols on itsM antennas,
as illustrated in Figure 1. Denote the transmitted pilot signal2 from
the BS in the j-th time slot as xj ∈ CM×1, j = 1, · · · , T . The re-
ceived signal vector at the i-th user in the j-th time slot yij ∈ CN×1

1s denotes the sparsity level, i.e., the number of non-zero spatial channel
paths.

2We discuss in Section 3.2 on how to choose the pilot symbols {xj}.

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 3181



BS

MS 2

MS 1

rich local
scatterers at MS

Zero coefficients
Non-zero coefficients

local scatterers
at BS for MS 1

local scatterers
at BS for MS 2

shared common
scatterers for MS 1, 2

Fig. 1. Illustration of joint channel sparsity structure due to the lim-
ited and shared local scattering effect at the BS side. Ωc is the sup-
port of the common scatterers shared by all users, while Ωi is the
support of the individual scatterers for the i-th user.

can be expressed as

yij = Hixj + nij , j = 1, · · · , T, (1)

where Hi ∈ CN×M is the quasi-static channel matrix from the BS
to the i-th user and nij ∈ CN×1 is the complex Gaussian noise
with zero mean and unit variance. Let X =

�
x1 · · · xT

�
∈

CM×T ,Yi =
�
y1 · · · yT

�
∈ CN×T andNi =

�
ni1 · · ·

niT ] ∈ CN×T be the concatenated transmitted pilots, received sig-
nal, and noise vectors respectively; the signal model (1) can be
equivalently written as

Yi = HiX+Ni, (2)

where tr(XXH) = PT and P is the average transmit power at the
BS per time slot.

2.2. Joint Sparse Massive MIMO Channel

Assume a uniform linear array model for the antennas at the BS and
the users, and use the angular domain representation [14], the chan-
nel matrixHi can be expressed as

Hi = ARH
w
i A

H
T ,

where AR ∈ CN×N and AT ∈ CM×M denote the unitary matri-
ces for the angular domain transformation at the user side and BS
respectively, Hw

i ∈ CN×M is the angular domain channel matrix
(see physical explanation of this model in [14]). In multi-user mas-
sive MIMO systems, due to the limited local scattering effects at
the BS side, the angular domain channel matrices {Hw

i } are in gen-
eral sparse. Furthermore, from extensive experimental studies of the
multi-user massive MIMO systems [9, 10], we have the following
two important observations on the angular domain channel matrices
{Hw

i }:
• Observation I (Sparsity Support within Individual Chan-

nel Matrix): The row vectors within an Hw
i usually have

the same sparsity support, i.e., supp(hi1) = supp(hi2) =

· · · supp(hiN ) � Ωi, where hij is the j-th row ofHw
i . This

is due to the limited scattering at the BS side, and relatively
rich scattering at the users (as illustrated in Figure 1).

• Observation II (Partially Shared Support between Different
Channel Matrices): When the users are physically close to
each other, they share some local scattering clusters at the BS
[15], as illustrated in Figure 1. Hence, the channel matrices
{Hw

i }may have a common support. Specifically, there exists

an index set Ωc of the common support, such that Ωc ⊆ Ωi,
for all i.

Based on the above Observations, we formally give the follow-
ing model for the channel matrices in multi-user massive MIMO sys-
tems.

Definition 1 (Joint Sparse Massive MIMO Channel). The channel
matrices {Hw

i : ∀i} have the following properties, with parameter
S = {sc, {si : ∀i}}.

(a) Individual joint sparsity due to local scattering at the BS:
Denote hij as the j-th row vector of Hw

i ; then there exists an index
set Ωi, with |Ωi| ≤ si � M , ∀i, such that

supp(hi1) = supp(hi2) = · · · supp(hiN ) � Ωi. (3)

(b) Distributed joint sparsity due to common scattering at the
BS: There exists an index set Ωc, with |Ωc| ≥ sc, such that

K�

i=1

Ωi = Ωc. (4)

Furthermore, the entries of (Hw
i )Ωi are i.i.d. complex Gaussian

distributed with zero mean and unit variance.

Note that S = {sc, {si : ∀i}} in Definition 1, where |Ωi| ≤ si,
∀i, |Ωc| ≥ sc, is the statistical knowledge of the channel sparsity
levels and we assume S is available3 at the BS. Note that the channel
support profile P = {Ωc, {Ωi : ∀i}} is unknown to both the BS and
the K MSs. Based on the above channel model, we shall elaborate
our distributed CSIT estimation and feedback framework in the next
section.

2.3. CSIT Estimation and Feedback

In this section, we propose a novel CSIT estimation and feedback
framework and the details are given in Algorithm 1. This novel
scheme allows us to exploit the distributed joint sparsity in the user
channel matrices to enhance the CSIT estimation quality. Obviously,
the pilot training and feedback overhead in Algorithm 1 are charac-
terized by T . Our goal is to exploit the hidden joint channel sparsity
in the CSIT recovery in Step 3 of Algorithm 1 to reduce the required
training and feedback overhead T in multi-user massive MIMO sys-
tems.

Algorithm 1 CSIT Estimation and Feedback
• Step 1 (Pilot Training): The BS sends the compressive train-
ing symbolsX ∈ CM×T , with T � M .

• Step 2 (Compressive Measurement and Feedback): The i-th
mobile user observes the compressed measurementsYi from
the pilot symbols given in (2) and feeds back to the BS side.

• Step 3 (Joint CSIT Recovery at BS): The BS recovers the
CSIT {He

1, · · · ,He
K} jointly based on the compressed feed-

back {Y1, · · · ,YK}.

3Note that the sparsity level depends on the scattering environment and
changes slowly (changes over a very long timescale). Hence, knowledge of
S can be obtained easily based on the prior knowledge of the propagation en-
vironment (e.g., can be acquired from offline channel propagation measure-
ment at the BS [16] or long term stochastic learning and estimation [17]).
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3. JOINT CSIT RECOVERY ALGORITHM DESIGN

In this section, we shall propose a joint orthogonal matching pursuit
(J-OMP) algorithm to conduct the CSIT recovery at the BS (Step 3
in Algorithm 1) by exploiting the hidden sparsity structures of the
channel matrices (Definition 1). To achieve this, we first rewrite (2)
into the standard CS model. Denote the following new variables:

Ȳi =

�
M

PT
YH

i AR ∈ CT×N , X̄ =

�
M

PT
XHAT ∈ CT×M ,

(5)

H̄i = (Hw
i )

H ∈ CM×N , N̄i =

�
M

PT
NH

i AR ∈ CT×N . (6)

Substituting these variables into (2), we obtain

Ȳi = X̄H̄i + N̄i, ∀i. (7)

Then (7) matches the standard CS measurement model, where X̄
is the measurement matrix with tr(X̄HX̄) = M and {H̄i} are the
joint sparse matrices.

3.1. Proposed J-OMP Algorithm

The proposed J-OMP is designed by extending conventional OMP
[18] to the specific sparsity structures of massive MIMO channels
and the details are given in Algorithm 2. Note that η (η > 1) in
the input of Algorithm 2 is a threshold parameter (as in Step 3). In
Algorithm 2, Step 2 and 3 aim to identify the common support Ωc

and the individual support Ωi respectively. Based on the estimated
individual support Ωe

i , Step 4 recovers the channel matrices using
the LS approach. Let si = s, ∀i; then the overall complexity of
Algorithm 2 is O(KsMNT ).

3.2. Discussion of the Pilot Training MatrixX

Under the proposed CSIT estimation scheme, one issue that remains
to be discussed is how to design the entries of theM ×T pilot train-
ing matrix X. In the CS literature, it is shown that efficient and
robust CS recovery can be achieved when the measurement matrix
satisfies a proper restricted isometry property (RIP) [19]. On the
other hand, matrices randomly generated from the sub-Gaussian dis-
tribution [19] can satisfy the RIP property with overwhelming prob-
ability [19]. Hence, the pilot training matrix X ∈ CM×T can be
designed as X = ATXa, where Xa ∈ CM×T is i.i.d. drawn from�
−
�

P
M
,
�

P
M

�
, with equal probability.

4. CSIT ESTIMATION QUALITY

In this section, we analyze the CSIT estimation performance in terms
of the normalized mean squared error [20] (NMSE) of the channel
matrices. First of all, let si = s, ∀i, to obtain simple expression.
Denote Ko � maxj /∈Ωc

�K
i=1 I{j∈Ωi}; then Ko < K from (4).

Denote γ � Ko
K

< 1. DenoteΘc, {Θi} as the following the events4:

Θc : In Step 2 of Alg. 2, support
Ωe

c is correctly identified, i.e., Ωe
c ⊆ Ωc. (9)

4Note that |Ωc| ≥ sc (as in Definition 1), and hence, we can at most
identify a subset of the common support Ωc in Step 2 of Algorithm 2, i.e.,
Ωe

c ⊆ Ωc, as in (9).

Algorithm 2 J-OMP for CSIT Recovery
Input: {Yi : ∀i},X, S = {sc, {si : ∀i}}, η (η > 1).
Output: Estimated {He

i} for {Hi : ∀i}.
• Step 1 (Initialization): Compute Ȳi, ∀i, X̄ from {Yi : ∀i}
andX, as in (5).

• Step 2 (Common Support Identification): Set Ri = Ȳi, ∀i,
Ωe

c = ∅ and repeat the following procedures sc times.

– A (Support Estimate): Estimate the remaining index set
by Ω

�
i = argmax|Ω|=si−|Ωe

c|
��(X̄Ω)

HRi

��
F
, ∀i.

– B (Support Update): Update the estimated common
support as Ωe

c = Ωe
c

��
argmaxj

�K
i=1 I{j∈Ω

�
i}

�
.

– C (Residual Update): Ri =
�
I−PΩe

c

�
Ȳi, where

PΩc is a projection matrix and is given by

PΩe
c
= (X̄Ωe

c
)(X̄Ωe

c
)†. (8)

• Step 3 (Individual Support Identification): For user i, set
Ωe

i = Ωe
c , then stop if ||Ri||2F ≤ ηNM

P
or the following

procedures have been repeated (si − sc) times, ∀i.

– A (Support Update): Update the estimated individual
support as Ωe

i = Ωe
i

��
argmaxj

��X̄(j)HRi

��
F

�
.

– B (Residual Update): Ri =
�
I−PΩe

i

�
Ȳi.

• Step 4 (Channel Estimation by LS): The estimated channel
for user i is He

i = AR(H̄
e
i )

HAH
T , where H̄e

i is given by�
H̄e

i

�Ωe
i =

�
X̄Ωe

i

�†
Ȳi,

�
H̄e

i

�[M ]\Ωe
i = 0, ∀i.

Θi : Conditional on Θc, in Step 3 of Alg. 2,
support Ωe

i is correctly identified, i.e., Ω
e
i = Ωi. (10)

we obtain the following theorem on the NMSE of the CSI in terms
of the probabilities of event Θc and {Θi : ∀i}.

Theorem 1 (CSIT Estimation Quality). The NMSE of Hi is
bounded by

E

�
�Hi −He

i�2F
�Hi�2F

�
≤ MNs

PT (1− δs)(s̃iN − 1)
+ Ei, (11)

where s̃i = |Ωi|, Ei = (2− Pr(Θc)− Pr(Θi))
�

1−δs+δ22s
1−δs

�
,

Pr(Θc) and Pr(Θi) are the probability of the events Θc and Θi re-
spectively, and δs and δ2s are the s-th and 2s-th restricted isometry
constants (RIC) [19] of X̄ respectively.

Proof. Please refer to [21].

Recall that in Section II, we observe (i) that the channel matrix
Hw

i is simultaneously zero or non-zero on its columns, with dimen-
sionN×1, and (ii) that theK users share a partial common channel
support Ωc. Therefore, it is interesting to see how the CSIT estima-
tion quality is affected by these joint sparsity parameters (N , Ωc).
Based on Theorem 1 and by analyzing the probabilities of Pr(Θc)
and Pr(Θi) with respect to (w.r.t.) the randomness of the channel
matrices in Algorithm 2, we obtain the following results (Corollary
1-2).
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Corollary 1 (CSIT Quality w.r.t. N ). Suppose |Ωi| = s, ∀i. If

θ � (1− 2δs)�
δs+1 + 2(1− δs)

�
(1+δ1)ηM

P

� > 1, (12)

where δ1, δs and δs+1 are the 1-th, s-th and 2s-th RICs [19] of X̄
respectively, then

lim
N→∞

− 1

N
ln (Ei) ≥ β > 0, (13)

where β is a positive parameter that depends on γ, θ, K, P , M and
X̄.

Proof. Please refer to [21].

Equation (13) can be re-written as

Ei ≤ exp (−N · β + o(N)) . (14)

From (14), we conclude that Ei in (11) decay at least exponentially
w.r.t. N and hence, a larger N turns out to have a smaller CSIT es-
timation error from Theorem 1. This result indicates that individual
joint sparsity in the user channel matrices (Observation I) is indeed
captured by the proposed recovery algorithm to improve the CSIT
estimation quality.

Corollary 2 (CSIT Quality w.r.t. Ωc). Suppose |Ωi| = s, ∀i.
Scale the threshold parameter η in Algorithm 2 as η =

√
P .

Let the transmit power P → ∞ and the number of users K →
∞. If (12) holds and p � s · exp

�
−N

�
ln θ − 1 + 1

θ

��
+

M exp (−N (θ − 1− ln θ)) < 1
2
(1− γ), we have

E

�
�Hi −He

i�2F
�Hi�2F

�
≤

�
s�

t=sc

�
s
t

�
− 1

�
ρ, (15)

where ρ is a positive parameter that depends on θ, M , N and X̄.

Proof. Please refer to [21].

From (15), E
�
�Hi−He

i�2

F

�Hi�2F

�
→ 0 as sc → s � |Ωi| and a

larger size (larger sc, sc ≤ s) of the common support Ωc shared by
the users tends to have a smaller CSIT estimation error. This result
indicates that the distributed joint sparsity in the user channel ma-
trices (Observation II) is indeed captured by the proposed recovery
algorithm to improve the CSIT estimation quality.

5. NUMERICAL RESULTS

In this section, we verify the performance advantages of our pro-
posed CSIT estimation scheme via simulation. Four baselines are
considered, namely baseline 1 of conventional LS [8], baseline 2 of
2-norm SOMP [22], baseline 3 of SD-SOMP [23], and baseline 4
of Genie-aided LS which directly recovers the CSI using LS with
Ωi replacing Ωe

i in Step 4 of Algorithm 2 (baseline 4 serves as an
performance upper bound). Consider a multi-user massive MIMO
system with one BS andK = 40 users, where the BS hasM = 300
antennas and each user has N = 2 antennas. The average transmit
SNR at the BS is P = 35 dB and the channel sparsity level statistic
is S = {14, {si = 22 : ∀i}}.

In Figure 2, we compare the NMSE of the estimated CSI ver-
sus the training and feedback overhead T . From this figure, we
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Fig. 2. NMSE of CSIT versus the CSIT training and feedback
overhead T in a multi-user massive MIMO network with 1 BS and
K = 40 users, where the BS and the user has M = 300, N = 2
antennas respectively, and the average transmit SNR at the BS is
P = 35 dB.

observe that the CSIT estimation quality increases as T increases.
On the other hand, the proposed J-OMP algorithm achieves a sub-
stantial performance gain over the baselines. This is because the
proposed J-OMP exploits the hidden joint sparsity among the user
channel matrices to better recover the CSI. Furthermore, we observe
that the proposed J-OMP, 2-norm SOMP and SD-OMP all approach
the genie-aided LS scheme as T increases. This is because the chan-
nel support recovery probabilities of these schemes all go to 1 as T
increases. This fact also highlights the importance of having a higher
probability of support recovery in the CSIT reconstruction.

6. CONCLUSION

In this paper, we consider multi-user massive MIMO of FDD sys-
tems and we deploy the compressive sensing (CS) technique to re-
duce the training as well as the feedback overhead in the CSIT es-
timation. We propose a distributed compressive CSIT estimation
scheme so that the compressed measurements are observed at the
users locally, while the CSIT recovery is performed at the base sta-
tion jointly. We develop joint OMP algorithm to conduct the CSIT
reconstruction which exploits the joint sparsity in the user channel
matrices. We also analyze the estimated CSIT equality in terms of
the normalized mean squared error. From the results, we show that
the joint channel sparsity can be exploited to enhancing the CSIT es-
timation quality in multi-user massive MIMO systems of FDD sys-
tems.

7. REFERENCES

[1] Erik G Larsson, Fredrik Tufvesson, Ove Edfors, and Thomas L
Marzetta, “Massive MIMO for next generation wireless sys-
tems,” arXiv preprint arXiv:1304.6690, 2013.

[2] Quentin H Spencer, A Lee Swindlehurst, and Martin Haardt,
“Zero-forcing methods for downlink spatial multiplexing in
multiuser MIMO channels,” IEEE Trans. Signal Process., vol.
52, no. 2, pp. 461–471, 2004.

3184



[3] Sinh Le Hong Nguyen and Ali Ghrayeb, “Compres-
sive sensing-based channel estimation for massive multiuser
MIMO systems,” in Proc. IEEE Wireless Commun. Network-
ing Conf. (WCNC). IEEE, 2013, pp. 2890–2895.

[4] Peter WC Chan, Ernest S Lo, Ray R Wang, Edward KS Au,
Vincent KN Lau, Roger S Cheng, Wai Ho Mow, Ross D
Murch, and Khaled Ben Letaief, “The evolution path of 4g
networks: FDD or TDD?,” IEEE Commun. Mag., vol. 44, no.
12, pp. 42–50, 2006.

[5] Thomas L Marzetta, Giuseppe Caire, Merouane Debbah,
I Chih-Lin, and Saif K Mohammed, “Special issue on mas-
sive MIMO,” Journal of Commun. and Networks, vol. 15, no.
4, pp. 333–337, 2013.

[6] Qinfang Sun, Donald C Cox, Howard C Huang, and Angel
Lozano, “Estimation of continuous flat fading MIMO chan-
nels,” IEEE Trans. Wireless Commun., vol. 1, no. 4, pp. 549–
553, 2002.

[7] Anna Scaglione and Azadeh Vosoughi, “Turbo estimation
of channel and symbols in precoded MIMO systems,” in
Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing
(ICASSP), 2004, vol. 4, pp. iv–413–iv–416 vol.4.

[8] Mehrzad Biguesh and Alex B Gershman, “Training-based
MIMO channel estimation: a study of estimator tradeoffs and
optimal training signals,” IEEE Trans. Signal Process., vol. 54,
no. 3, pp. 884–893, 2006.

[9] Yan Zhou, Markus Herdin, Akbar M Sayeed, and Ernst Bonek,
“Experimental study of MIMO channel statistics and capacity
via the virtual channel representation,” IEEE Trans. Wireless
Commun., 2006.

[10] Jakob Hoydis, Cornelis Hoek, Thorsten Wild, and Stephan ten
Brink, “Channel measurements for large antenna arrays,” in
Proc. IEEE Int. Symp. Wireless Commun. Systems (ISWCS),
2012, pp. 811–815.

[11] Christian R Berger, Zhaohui Wang, Jianzhong Huang, and
Shengli Zhou, “Application of compressive sensing to sparse
channel estimation,” IEEE Commun. Mag., vol. 48, no. 11, pp.
164–174, 2010.

[12] Waheed U Bajwa, Jarvis Haupt, Akbar M Sayeed, and Robert
Nowak, “Compressed channel sensing: A new approach to
estimating sparse multipath channels,” Proc. IEEE, vol. 98,
no. 6, pp. 1058–1076, 2010.

[13] C.R. Berger, Shengli Zhou, J.C. Preisig, and P. Willett, “Sparse
channel estimation for multicarrier underwater acoustic com-
munication: From subspace methods to compressed sensing,”
IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1708–1721,
2010.

[14] D. Tse and P. Viswanath, Fundamentals of wireless communi-
cation, Cambridge Univ Pr, 2005.

[15] J. Poutanen, K. Haneda, J. Salmi, V. Kolmonen, F. Tufvesson,
T. Hult, and P. Vainikainen, “Significance of common scat-
terers in multi-link indoor radio wave propagation,” in Proc.
IEEE European Conf. Antennas and Propagation (EuCAP),
2010, pp. 1–5.

[16] J-J Fuchs, “Detection and estimation of superimposed signals,”
in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing
(ICASSP), 1998, vol. 3, pp. 1649–1652.

[17] Léon Bottou and Noboru Murata, “Stochastic approximations
and efficient learning,” The Handbook of Brain Theory and
Neural Networks, Second edition,. The MIT Press, Cambridge,
MA, 2002.

[18] T Tony Cai and Lie Wang, “Orthogonal matching pursuit for
sparse signal recovery with noise,” vol. 57, no. 7, pp. 4680–
4688, 2011.

[19] Emmanuel J Candès and Michael B Wakin, “An introduction
to compressive sampling,” IEEE Signal Process. Mag., vol. 25,
no. 2, pp. 21–30, 2008.

[20] David Wisell and Magnus Isaksson, “Derivation of a behav-
ioral RF power amplifier model with low normalized mean-
square error,” in Proc. 37th.Eur. Microw. Conf., Munich, Ger-
many, Otc. 2007, pp. 485–488.

[21] X. Rao and V.K.N. Lau, “Distributed compressive CSIT esti-
mation and feedback for FDD multi-user massive MIMO sys-
tems,” submitted to IEEE Trans. Signal Process., 2013.

[22] Joel A Tropp, Anna C Gilbert, and Martin J Strauss, “Algo-
rithms for simultaneous sparse approximation. part I: Greedy
pursuit,” Signal Processing, vol. 86, no. 3, pp. 572–588, 2006.

[23] Junhua Liang, Yang Liu, Wenjun Zhang, Youyun Xu, Xiaoying
Gan, and Xinbing Wang, “Joint compressive sensing in wide-
band cognitive networks,” in Proc. IEEE Wireless Commun.
Networking Conf. (WCNC), 2010, pp. 1–5.

3185


