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ABSTRACT
Singular value decomposition (SVD) plays an important role in sig-
nal processing for multi-input multi-output (MIMO) communication
systems. Under massive MIMO scenarios, as the channel matrix is
very large, implementing SVD at every frame is highly inefficient.
Existing literature on iterative SVD algorithms are mostly heuristic
based, and the associated tracking performance under time-varying
channels is not clear. The difficulties of deriving and analyzing SVD
algorithms are due to the non-convexity of the associated optimiza-
tion problem and the time-varying nature of the MIMO channel.
In this paper, we formulate the problem on Grassmann manifolds
and derive a multi-stream iterative SVD algorithm using optimiza-
tion techniques. To enhance the tracking performance under time-
varying channels, we propose a compensation algorithm to offset the
motion of the time-varying target eigenspace. We analyze the con-
vergence behavior of the proposed algorithm, where we show that
under some mild conditions, the proposed iterative SVD algorithm
with compensations has zero tracking error, despite the underlying
problem being non-convex and the channel being time-varying. The
complexity of the algorithm is only O(n2p) for estimating p singu-
lar vectors, compared with O(n3

) for the SVD of a n ⇥ n channel
matrix.

Index Terms— SVD, Iterative algorithm, Convergence analysis,
Grassmann manifold, Optimization

1. INTRODUCTION

1.1. Motivations

Singular value decomposition (SVD) is a key technology in multi-
input multi-output (MIMO) systems. Applying SVD to a MIMO
channel matrix, parallel eigen-subchannels can be created for multi-
ple data stream transmission. There are many applications of SVD in
MIMO systems. For example, a MIMO-SVD joint processing on the
transmitter and receiver in a multi-user MIMO (MU-MIMO) system
was studied in [1]. The author in [2] proposed a SVD-based beam-
forming strategy under noisy channel state information (CSI), where
SVD is used to create parallel eigen-subchannels from the MIMO
channel.

The computational complexity of SVD for a n ⇥ n matrix is
O(n3

) [3]. While this is acceptable in current MIMO systems with
small channel matrices [1,2,4,5], the complexity may be too high for
massive MIMO systems [6–8], where the number of antennas n is
typically very large. Since the MIMO channel is temporal correlated,
it is not efficient to compute a new SVD for the large channel ma-
trix once every transmission frame. Instead, it is desirable to utilize
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the channel temporal correlation and derive recursive algorithms to
reduce the complexity. One systematic approach is to reverse engi-
neer an optimization objective so that the associated optimizer is the
desired eigenspace of the channel matrix. However, this is very chal-
lenging, because the underlying optimization problem is non-convex
and there might be multiple non-isolated local optima that affect the
convergence of the algorithm. The more challenging problem is, as
the channel matrix is time-varying, the optimal target eigenvectors
are time-varying as well, and therefore, the algorithm needs to track
the solution to a series of time-varying optimization problems.

In this paper, we propose an iterative SVD algorithm to track a
small number of active eigen-subchannels in a time-varying massive
MIMO system. To deal with the non-isolated local optima problem,
we adopt an optimization based approach over Grassmann mani-
fold [9, 10] and derive the iterative SVD algorithm by extending the
gradient over a manifold [9, 11]. To enhance the tracking of the
time-varying eigen-subchannels, we propose a compensation algo-
rithm by compensating the motion of the target eigen-subchannel.
We show in our analysis that, despite the underlying problem being
non-convex, the proposed algorithms converge to the global optimal
solution almost surely when the channel matrix is static. In time-
varying channels, the tracking error of the continuous-time dynam-
ics for the proposed compensation algorithm convergences to zero
almost surely under some mild conditions. We also demonstrate in
the simulation that the proposed algorithms have superior tracking
capability over the baseline schemes and only have a complexity of
O(n2

t ), where nt is the number of transmitter antennas.

1.2. Relation to Prior Work

There are a number of iterative SVD algorithms developed in the
past, most of which can be classified into four families: methods
based on QR factorization or Jacobi rotation, power methods, Krylov
subspace methods and gradient based methods. Specifically, how-
ever, the incremental Jacobi methods [12] are not attractive in large
systems due to their high computational complexity. The power
methods, such as power iteration [13], subspace iteration [14] and
Rayleigh-Ritz method [15], have a fast convergence speed for a static
matrix, but they perform poorly when the matrix is time-varying.
The Krylov subspace method, such as Lanczos method [16] and fast
subspace decomposition [17], either have poor tracking performance
under time-varying channels or require a high complexity to update
the Krylov subspace at each time slot for the time-varying matrix.
On the other hand, the existing gradient type algorithms, e.g., PAST-
like algorithms [18], gradient descent with deflations [19] and gradi-
ent flows on manifolds [9,20], still did not fully exploit the time vari-
ation property of the channel to enhance their eigen-subspace track-
ing performance. In general, although the traditional gradient-like
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algorithms are suitable for the tracking in noisy time-varying chan-
nels, their convergence speed is slow. Moreover, in these existing
works, there is no analytical convergence analysis for the tracking
under time-varying channels.

2. SYSTEM MODEL

Consider a point-to-point massive MIMO wireless communication
system, where the transmitter has nt antennas and the receiver has
nr antennas. Both nt and nr are assumed to be large, i.e., at the
order of 100. The received signal at the receiver is modeled as y =

Hs + z, where H 2 Cnr⇥nt is the MIMO channel, s 2 Cnt is the
transmit signal, y 2 Cnr is the received signal and z ⇠ CN (0, Inr )

is the additive complex Gaussian noise.
We assume that there is rich local scattering at the receiver. On

the other hand, since the transmitter is usually installed on the roof
of a building or on a tower, when it equips with a large number of an-
tennas, there is usually not enough local scattering around the trans-
mitter. As a result, the angular spread (AS) of the transmit signal
is narrow. This phenomenon is captured by the widely used one-
ring local scattering model [21, 22] for massive MIMO systems. We
adopt the one-ring model in [21, 22], and the MIMO channel matrix
H is rank deficient, i.e., rank(H) ⌧ min(nr, nt). Moreover, the
time-varying channel H(t) is assumed to be ergodic stationary.

Since there are only a few active eigen-modes for the channel H ,
we only deliver p data streams (p < rank(H) ⌧ min(nr, nt)) from
the transmitter to the receiver. Suppose we know the SVD of the
channel H and write H = U⌃V †, where ⌃ is a nr⇥nt matrix with
only non-zero main diagonal elements sorted in descending order as
the singular values of H . Then the transmitter can apply the first p
columns of V as the precoder V 2 Cnt⇥p, and the receiver uses the
first p columns of U as the decorrelator. The MIMO channel is then
transformed to p parallel eigen-subchannels. We assume the receiver
has perfect CSI knowledge, and at each time slot, it computes the
precoder V 2 Cnt⇥p and feeds back to the transmitter.

The above precoding strategy is widely used in both the indus-
try and the literature, but it requires O(n3

t ) arithmetic operations
as SVD is involved. There are some complexity-reduced recursive
SVD algorithms in the literature [12–20], but since the performance
of a massive MIMO system is very sensitive to the SVD conver-
gence errors, these algorithms may not have satisfactory tracking
performance under time-varying massive MIMO channels.

3. MULTI-STREAM ITERATIVE SVD ALGORITHM
DESIGN FOR TIME-VARYING CHANNELS

We note that finding the first p right-singular vectors of H is equiva-
lent to finding the eigenvectors of A = H†H corresponding to the p
largest eigenvalues. As a result, the desired precoder V corresponds
to the solution to the following problem

max

X2Cnt⇥p
f(X) = tr[X†A(t)X], subject to X†X = Ip (1)

However, when p > 1, the above problem becomes very hard to
solve, because it is non-convex due to the unitary constraint. More-
over, the optimum X⇤ is not unique and non-isolated, since the ro-
tated solution X⇤M gives another optimum under any unitary matrix
M 2 Cp⇥p.

3.1. Problem Transformation on Grassmann Manifold

To resolve this problem, notice that all the semi-orthogonal ma-
trices that span the same subspace yield the same value in the
objective function f(X). Therefore, we should quotient out such
equivalence and treat all the matrices X that span the same column
space as the same element to optimize. Such observation leads to
the notion of the Grassmann manifold. Specifically, a Grassmann
manifold Grass(p, nt) is the set of all p-dimensional subspaces:
Grass(p, nt) = {span(X) : X 2 Cnt⇥p, rank(X) = p}, where
span(X) denotes the column space spanned by X .

Let f : Grass(p, nt) 7! R : span(X) 7! tr((X†X)

�1X†AX).
Then precoder optimization problem (1) can be reformulated into the
eigenspace optimization on the Grassmann manifold

max

span(X)2Grass(p,nt)
f(X) = tr[(X†X)

�1X†A(t)X] (2)

where the optimization variable is any p-dimensional subspace in
Cnt⇥p.

Note that, if A has distinct p-th and (p + 1)-th eigenvalues
�p 6= �p+1, the above problem (2) has a unique global optimal
solution span(X⇤) on the Grassmann manifold [23]. For nota-
tion convenience, we consider the matrix X to represent the sub-
space span(X) 2 Grass(p, nt), where, without loss of generality,
X is considered to be the matrix that satisfies X†X = Ip and
X†AX = �, diagonal1.

3.2. Eigenspace Tracking Algorithm with Compensations

An intuitive way to solve the problem (2) is to generalize the gra-
dient algorithm to the Grassmann manifold. Using the calculus on
Grassmann manifold [10, 11], the gradient of (2) is given by

rf(X) := AX �X(X†X)

�1X†AX. (3)

As a result, the gradient algorithm on Grassmann manifold is given
by

Xn+1 = Xn + �nrf(Xn). (4)

In general, when the parameter A is static, gradient-based algo-
rithms can converge to a local optimal point under a good choice of
step size sequence �n. However, under the time-varying parameter
A(t), a constant step size �n ⌘ � (that violates the convergence-
guaranteed step size rule) may be used for the tracking. In addition,
since the optimal solution X⇤(t) is now also time-varying, there is
always a convergence gap between Xn and X⇤(tn).

Intuitively, to reduce the tracking error gap, one would like to
estimate the motion of the moving target X⇤(tn) and compensate to
it:

Xn+1 = Xn + �rf(Xn; tn) + \4X⇤,n (5)

where \4X⇤,n is a compensation for the moving target X⇤(tn+1)�
X⇤(tn).

However, it is challenging to obtain X⇤(tn+1) � X⇤(tn), be-
cause it requires the knowledge of the optimal solution X⇤(tn).
To tackle this problem, consider the optimality condition [24]
g(X;A) , rf(X) = 0 at the optimal point span(X⇤) 2
Grass(p, nt). In this implicit function, taking the differentiation
on g(⇧) with respect to (w.r.t.) t, we obtain

h(dX⇤;X⇤, A) + g(X⇤, dA) = 0 (6)
1Under such specification, there are still multiple X to represent the same subspace.
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where g(X⇤, dA) = g(X⇤, A(t + dt)) � g(X⇤, A(t)) is the par-
tial differential of g(X⇤;A) on A, and h(dX⇤;X⇤A) is the partial
differential of g(X;A) on span(X⇤) along the direction dX⇤, i.e.,
the Hessian of the objective function f(X) [9, 20]. Note that, under
the assumption �p 6= �p+1, the unique global optimum span(X⇤) is
non-degenerate and the function g(X;A) = 0 has a unique solution
in the neighborhood of span(X⇤). Moreover, the Hessian h(⇠;X⇤A)

is linear in ⇠. Then by the implicit function theorem [10], there exists
a unique solution dX⇤ = ⇠ to the equation (6).

Suppose that the iterate Xn is a good approximation of X⇤. We
can thus obtain an estimation of the compensation \4X⇤,n :=

ˆ⇠ by
solving the following equation over ˆ⇠

h(ˆ⇠;Xn, A(tn)) + g(Xn, dA(tn)) = 0. (7)

3.3. Low Complexity Implementation

Using the property of Grassmann manifold, the compensation equa-
tion (7) can be solved efficiently. From the results in [20, 23], the
Hessian term in (7) is given by

h(ˆ⇠;X,A) = (Int �XX†
)

h
Aˆ⇠ � ˆ⇠(X†X)

�1X†AX
i
. (8)

As X represents a subspace in the Grassmann manifold, we can sim-
ply consider X to be semi-orthonormal and X†AX = �, a diago-
nal matrix. This is because, we can always take X

0
= XM to

span the same column subspace as X , where M is obtained from
X†AX = M�M† and � is a diagonal matrix with diagonal ele-
ments �1, . . . ,�p. As a result, the equation (7) can be decomposed
into p parallel linear matrix equations,

(Int �XX†
) [A� �iInt ]

ˆ⇠i + g(X, dA)

i
= 0 (9)

where ˆ⇠i and g(X, dA)

i are the i-th (1  i  p) columns of ˆ⇠ and
g(X, dA), respectively.

The linear equations (9) can be solved efficiently by conjugate
gradient (CG) algorithm, which has a fast convergence speed and
low complexity. In fact, as g(X, dA) is small and Xn is close to
X⇤

(tn), computing only one step of the CG algorithm would be
enough to obtain a first order approximation for X⇤(tn+1)�X⇤(tn).

Furthermore, to make the algorithm practical, it is desirable to
choose a good representative Xn for the subspace span(Xn) from
each iteration. One strategy is to apply the Gram-Schmidt procedure
q(⇧) on each iteration to guarantee X†

nXn = Ip. On the other hand,
we want Xn to diagonalize A, which can be easily realized by tak-
ing X

0
n+1 := Xn+1M , where M is a unitary matrix given by the

diagonalization of the p⇥ p matrix X†
n+1AXn+1 = M�M†.

4. TRACKING PERFORMANCE ANALYSIS FOR
MULTI-STREAM ITERATIVE SVD

In this section, we analyze the performance of the iterative SVD
algorithms derived in the previous section. Existing literature only
focuses on the convergence under static channel. However, we also
need to understand the tracking performance under time-varying
massive MIMO channels. We introduce the convergence result in
the following.

4.1. Convergence under Static Channel H

When the channel H is static, the compensation term is zero and
the proposed compensation algorithm (5) degenerates to the gradi-
ent algorithm (4) on the Grassmann manifold. We can derive the
following convergence result.

Theorem 1 (Global convergence under static CSI). Consider that
the initial solution X0 is random and the step size rule in (4) satisfiesP

n �n = 1 and
P

n �2
n < 1. Then the iterate Xn in algorithm

(4) converges to X⇤ almost surely.

This result has been well established in the literature and the as-
sociated analysis can be found in [9]. The result shows that, despite
the original eigen precoding problem (1) being non-convex, the al-
gorithm on the Grassmann manifold still converges to the global op-
timal solution. However, we are most interested in the case when
H(t) is time-varying.

4.2. Convergence under Time-varying Channel H(t)

We first study the tracking error of the conventional gradient algo-
rithm (4) by dropping the compensation term in (5).

Denote 4�p(◆) = �p(◆) � �p+1(◆) as the eigenvalue gap of
A(◆) for the p-th and (p + 1)-th eigenvalues, ⌫(◆) , kdA(◆)k2/d◆
as the channel variation speed, ⌫ = sup◆<T ⌫(◆), and ⌧ as the frame
duration. We have the following result.

Theorem 2 (Tracking error for the gradient algorithm). Suppose the
eigenvalue gap satisfies 4�p(◆) � �0 > 0, for ◆ 2 [0, T ) w.p.1.
Then, for 0 < ✏ < �0, there exists �(✏) > 0, such that if the channel
variation speed ⌫ < �

p⌧ �0(�0 � ✏)� and the initial tracking error
kX0 �X⇤(0)kF < �, then the average mean square tracking error
is bounded by

1

T/⌧

T/⌧X

n=1

EkXn �X⇤(tn)k2F  ⌫2⌧2p2

�2↵
�+O(� +

1

T
)

where ↵ = sup�0c<1{(�0�✏)F4|�0(c)+(c�✏)
�
1� F4|�0(c)

�},
� = E

⇥
(4�p � ✏)�1

(4�p)
�2

⇤
, and F4|�0(x) , Pr(4�p 

x|4�p > �0) is the distribution function of the eigenvalue gap
4�p.

Proof. Please refer to [25] for the proof.

The above result shows that the channel variation speed ⌫ and
the channel singular value gap distribution (captured by ↵) have a
significant impact on the tracking error of the gradient algorithm.
Small ⌫ and large ↵ are both desired for maintaining small tracking
errors. With this observation, one can reduce the tracking error by
increasing ↵. One strategy is to use more antennas, so that there is a
higher chance to have a large singular value gap 4�p > �0 for the
particular p-th and (p + 1)-th singular values [26], which results in
a larger ↵.

We now consider the tracking performance of the compensation
algorithm (5). From (5), consider the equivalent continuous-time
algorithm dynamics Xc

(t) as the solution to

dXc
= g(Xc

;A(t))dt+ ddX⇤, Xc
(0) = X0 (10)

where ddX⇤(t) satisfies the dynamic equation h(ddX⇤;X
c, A) +

g(Xc, dA) = 0 for all t > 0. We have the following convergence
result.
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Fig. 1. Aggregate angle difference versus the terminal mobility.

Theorem 3 (Convergence of the compensation algorithm). Suppose
the largest singular value �1 of H(t) is bounded w.p.1. Then there
exists a ✏ > 0, such that for kXc

(0) � X⇤(0)kF < ✏, we have
kXc

(t)�X⇤(t)kF ! 0, as t ! 1 almost surely.

Proof. Please refer to [25] for the proof.

The compensation algorithm in (5) can be viewed as a discretiza-
tion from the continuous-time algorithm flow Xc

(t) in (10). The
above result provides a close insight on the superior tracking ca-
pability of the proposed multi-stream iterative SVD algorithm with
compensations. It implies that, despite the eigen precoding optimiza-
tion problem (1) being non-convex and the massive MIMO channel
being time-varying, by choosing a proper initial state, it is possible
to achieve a sufficiently small tracking error from the proposed com-
pensation algorithm in (5)2.

5. NUMERICAL RESULTS

We consider a point-to-point MIMO wireless communication chan-
nel with nt = 40 transmit antennas, nr = 8 receive antennas
and p = 4 data streams to deliver. In the simulation, we follow
a similar model in LTE standard [28] to specify the spatial cor-
relation of the MIMO channel. The temporal correlation is mod-
eled by the widely used autoregressive (AR) model [29] given by
Hn = ✓Hn�1 +

p
1� ✓2W , with ✓ = J0(2⇡fd⌧), where J0(⇧) is

the zero-th order Bessel function, fd is the maximum Doppler fre-
quency, ⌧ = 1 ms is the frame duration, and W is a zero mean
complex Gaussian random matrix with covariance specified by the
channel spatial correlation. Water-filling power allocation is applied.
The step size of the proposed tracking algorithm is � = 0.5. The
simulation is run for over T = 100 s.

The performance of the proposed compensation algorithm is
compared with the following baselines (BL). BL1: Power iter-
ation with deflations [19, 30], BL2: Subspace iteration with the
Rayleigh-Ritz method [15], BL3: Fast subspace decomposition [17]

2There would be a O(�⌧) discretization error due to the use of constant step size �
in each frame with duration ⌧ [25, 27].
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(implemented in an iterative way with similar per frame (i.e., time
slot) complexity), BL4: PAST algorithm [18], BL5: Newton algo-
rithm on the Grassmann manifold [20], and BL6: Exhaustive SVD,
where a complete SVD is computed for H(t) at every time slot.

Fig. 1 shows the tracking error versus the terminal mobility. The
tracking error � is defined as � , EkXn � X⇤kF . The proposed
compensation algorithm significantly outperforms BL1 - BL5 from
medium to high mobility (> 10 km/h). Fig. 2 shows the aggregate
achievable data rate versus the terminal mobility under 10 dB SNR.
The proposed compensation algorithm outperforms BL1 - BL5 and
its performance is very close to BL6 employing exhaustive SVD at
every time slot. We can also observe that, although the Newton al-
gorithm (BL5) has a good performance under slow mobility, it is not
reliable for high mobility.

To study the computational complexity, we count the number
of arithmetic operations (addition, multiplication, etc.) per frame.
Omitting the small order terms, the proposed compensation algo-
rithm requires around 14n2

tp arithmetic operations, compared to
4n2

tnr + 8ntn
2
r + 9n3

r (for nt � nr) of BL6 (exhaustive SVD) [3].
In particular, for nt ⇡ nr ⇡ n, our algorithms have a complex-
ity order O(n2p), which is substantially lower than O(n3

) for the
conventional exhaustive SVD algorithm.

6. CONCLUSIONS

In this paper, we have derived a multi-stream iterative SVD algo-
rithm with compensations to track a few principal eigen-subchannels
of a massive MIMO system. The algorithm is derived by solv-
ing an optimization problem formulated in the Grassmann mani-
fold. To fully utilize the channel temporal correlation, we introduce
a compensation term to offset the motion of the target time-varying
eigenspace. We show in our analysis that the proposed compensa-
tion algorithm converges to the global optimal solution under static
channels, and its tracking error is negligible in time-varying chan-
nels. We have also demonstrated with numerical results that the pro-
posed compensation algorithm has superior performance advantage
over various baselines.
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