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ABSTRACT

This paper considers robust constant envelope (CE) precoding with

antenna-subset selection (AS) in a large-scale MISO downlink sce-

nario where only imperfect channel state information at the trans-

mitter (CSIT) is available. CE precoding is a recently proposed

transmission scheme that enables the use of cheap but highly power-

efficient power amplifiers, while AS is a well-known approach for

reducing the number of power amplifiers. The combination of these

two techniques can significantly cut down costs in hardware imple-

mentations. We formulate a power minimization problem for AS CE

precoding where the worst-case symbol error rate is constrained to

be less than a given threshold. The formulation utilizes our recent

results on signal characterization of CE precoding. The formulated

power minimization optimization problem turns out to be a zero-one

linear program. We show that this problem is NP-hard in general.

Then, we propose an efficient approximation by Lagrangian dual

relaxation and greedy knapsack approximation. Simulation results

show that the proposed algorithm can achieve near-optimal perfor-

mance, and the average number of active antennas accounts for only

19− 53% of the total transmit antennas.

Index Terms— Large-scale MIMO, antenna subset selection,

constant envelope, power minimization, robust design.

1. INTRODUCTION

Large-scale multiple-input multiple-output (MIMO) systems have

recently caught much attention from both academia and industry.

The massive number of antennas in large-scale MIMO systems has

the advantage of high spectral efficiency, low transmit power, as well

as simple receive/transmit processing [1]. However, the practical

implementation of large-scale MIMO systems can be very expen-

sive as a large number of highly power-efficient power amplifiers

are needed. The power amplifiers for traditional beamforming sys-

tems may not be an attractive option for large-scale MIMO systems,

as they are designed to have a large dynamic region to accommodate

the large variation of signal power in beamforming signals. This

linearity requirement inevitably leads to high cost and low power

efficiency. Constant envelope (CE) precoding has recently been pro-

posed by Mohammed and Larsson in [2, 3] to overcome the cost and

power efficiency issues. In CE precoding, the transmitting signals

are constrained to be constant envelope and only the phases are used

to convey information. This allows us to employ cheap and highly

power-efficient power amplifiers [4, 2], which is very appealing to

large MIMO systems.

This work is supported by a Direct Grant by the Chinese University of
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This paper focuses on robust CE precoding design for single-

user large-scale MISO downlink channels, where only channel state

information at the transmitter (CSIT) is known. Specifically, we con-

sider CE precoding with antenna-subset selection (AS) [5, 6]. AS is

a popular technique for reducing the complexity and cost of trans-

mitter implementations, enabling one to use much smaller number

of RF chains than the number of transmit antennas.

The goal of our design is to minimize the total transmission

power while ensuring that the symbol error rate performance of the

user under the worst-case channel uncertainty is upper bounded by

a given threshold. The design problem is based on our recent re-

sults [7] on the complete characterization of the so-called doughnut

region and the exact recovery of the phases of transmitting signals.

As it turns out, the formulated optimization problem for AS CE pre-

coding is a zero-one linear program. We establish the NP-hardness

of the AS CE problem by reducing the knapsack problem to the AS

CE problem. We then propose an efficient approximate algorithm

for the AS CE problem. There are two ingredients of our proposed

algorithm. The first one is the Lagrangian dual method, where we

tackle the dual problem of the AS CE problem. The dual problem

only has one optimization variable, which can be easily handled by

the bisection method. The second ingredient is that we rewrite the

optimization problem associated with the dual function as a series of

knapsack problems which have efficient approximate solutions due

to Dantzig [8].

Simulation results reveal that the proposed algorithm yields a

power performance very close to a performance lower bound. It

is also shown that AS can significantly reduce the number of RF

chains; the average number of active antennas can be about 19−53%
of the total number of transmitting antennas. Comparing AS CE with

beamforming design, AS CE shows a 3.5−4.6dB performance loss.

But it should be noted that AS CE transmission has the advantages

of CE transmission, cheap implementation, and fewer RF chains.

We should briefly describe the relation of the present work to

the prior works. Our work is based on the recently proposed CE

precoding approach in [2, 3, 9]; also [7] for our very recent endeavor.

The previous CE precoding works do not consider AS, while the

theme of this paper is on AS designs for CE precoding.

2. SYSTEM MODEL

We consider an MISO downlink scenario with imperfect CSIT:

y = (h̄+∆h)Tx+ ν (1)

where y ∈ C is the receive signal; x ∈ C
N the transmitting sig-

nal; ν ∈ C the noise whose distribution is CN (0, 1); and h̄ ∈ C
N
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and ∆h ∈ C
N the estimated channel and the unknown channel un-

certainty, respectively. The channel uncertainty is assumed to be

deterministic and lies in the following region

|∆h| ≤ ǫ (2)

where | · | denotes the element-wise absolute value and ǫ ≥ 0 is the

uncertainty upper bound with ǫi being the upper bound on |∆hi|.
The traditional beamforming (BF) signal takes the following

form

xBF = ws (3)

where w ∈ C
N is the beamformer, s ∈ S is the information sym-

bol, and S is the constellation with unit power Es∈S |s|2 = 1 . As

the beamformer w depends on h̄ generally, the instantaneous per-

antenna power |xi|2 = |wis|2 may vary significantly due to the in-

formation symbol s and the channel h̄. Thus the power amplifiers for

BF must have a wide linear region, which leads to higher hardware

costs and lower power efficiency [4, 2].

Constant envelope precoding has been recently proposed by [2,

3, 9] to alleviate the cost and power efficiency issues in power am-

plifier. In CE precoding, the transmitting signal x takes the form

of

xi =
√
PPAe

jθi , i = 1, . . . , N (4)

where PPA is a fixed per-antenna power and θi is the phase of the

transmitting signal. It can be seen that the per-antenna power of the

CE signal is always constant irrespective of the information symbol

as well as the channel h̄. Due to this salient feature, the power am-

plifiers for CE signals can be cheaply implemented and the power ef-

ficiency can be much higher than that of power amplifiers for BF [4,

2].

In this paper, we consider CE precoding aided by antenna-subset

selection (AS) [5, 6], which can further reduce the implementation

costs. The transmitting signal takes the form of

xi =
√
PPAaie

jθi , i = 1, . . . , N (5)

where ai ∈ {0, 1} denotes the on-off state of antenna i.

3. PROBLEM FORMULATION

The goal of this paper is to develop an optimized design for AS-aided

CE precoding. In particular, we will be interested in minimizing the

total transmission power, while ensuring the user’s target quality of

service (QoS) being satisfied.

Let us begin with the problem formulation. From (1) and (5),

the receive signal can be written as

y =

(

N
∑

i=1

√
PPAh̄iaie

jθi

)

+

(

N
∑

i=1

√
PPA∆hiaie

jθi

)

+ ν. (6)

To transmit an information symbol s drawn from a constellation S,

the transmitter tries to perform CE precoding to find a phase vector

θ such that

αs =
N
∑

i=1

√
PPAh̄iaie

jθi , (7)

where α > 0 is some scalar. The phase optimization problem in (7)

(or the precoder problem) can be solved in closed form [7]; we omit

the detail here due to space limit. Also, by [7] (see also [2]), there

exists a θ satisfying (7) for every s ∈ S if and only if

αS ⊂ D(
√
PPAh̄⊙ a) (8)

where⊙ is the Hadamard product, a = [a1, . . . , aN ]T , andD is the

so-called doughnut region defined as

D(g) = {d ∈ C | 2‖g‖∞ − ‖g‖1 ≤ |d| ≤ ‖g‖1}. (9)

Then the receive signal can be rewritten as

y = αs+

(

N
∑

i=1

√
PPA∆hiaie

jθi

)

+ ν. (10)

We are interested in providing a worst-case symbol error rate (SER)

guarantee, that is

max
|∆h|≤ǫ

Pr(s 6= ŝ ; ∆h) ≤ bo, (11)

where ŝ is the receiver detection obtained by applying symbol deci-

sion on y/α, and bo is the predefined SER threshold.

Under the aforementioned problem setup, we formulate the AS-

aided CE precoding design as a power minimization problem

PT = min
α∈R+,a∈RN

PPAa
T
1 (12a)

s.t. αS ⊂ D(
√
PPAh̄⊙ a), (12b)

max
|∆h|≤ǫ

Pr(s 6= ŝ ; ∆h) ≤ bo, (12c)

a ∈ {0, 1}, (12d)

where we seek to find an antenna activation pattern that satisfies a

worst-case SER guarantee (specified by b0) and uses the least total

transmission power. We proceed to reformulate problem (12) into

a more convenient form. Let |s|max = maxs∈S |s| and |s|min =
mins∈S |s| denote the largest and smallest amplitudes of all con-

stellation points, respectively. Using the definition of D in (9), the

constraint (12b) can be equivalently written as

α|s|min ≥ 2
√
PPA‖h̄⊙ a‖∞ −

√
PPA‖h̄⊙ a‖1

α|s|max ≤
√
PPA‖h̄⊙ a‖1.

(13)

To handle the SER constraint (12c), we use the commonly adopted

union bound constraint

max
|∆h|≤ǫ

s,s′∈S,s 6=s′

Pr(|y − αs| > |y − αs′|; ∆h) ≤ bo
|S| − 1

, (14)

where |S| is the size of the constellation S. Note that (14) provides

a safe guarantee for the SER constraint (12c). Using classical results

of detection in SISO channels [10], Eq. (14) can be rewritten as

√
2ρ+ 2

√
PPAǫ

T
a ≤ αη (15)

where η = mins,s′∈S,s 6=s′ |s − s′| is the minimum distance of the

constellation S, ρ = Q−1(bo/(|S| − 1)), and Q−1 is the inverse Q
function. Plugging (13) and (15) into problem (12), we reformulate

problem (12) as

min
α∈R+,a∈RN

a
T
1 (16a)

s.t. α ≤
√

PPA

|s|max
‖h̄⊙ a‖1, (16b)

√
PPA

|s|min
(2‖h̄⊙ a‖∞ − ‖h̄⊙ a‖1) ≤ α, (16c)

1

η
(
√
2ρ+ 2

√
PPAǫ

T
a) ≤ α, (16d)

a ∈ {0, 1}N . (16e)

3162



We eliminate the variable α by combining the constraint (16b) –

(16d); the resultant problem is

min
a∈RN

a
T
1 (17a)

s.t.
√

2|s|max

η
√

PPA

ρ+ 2|s|max

η
ǫ
T
a ≤ ‖h̄⊙ a‖1, (17b)

2|s|max

|s|min+|s|max
‖h̄⊙ a‖∞ ≤ ‖h̄⊙ a‖1, (17c)

a ∈ {0, 1}N , (17d)

where (17b) is obtained by combining the right-hand side (RHS) of

(16b) and the left-hand side (LHS) of (16d), and (17c) by the RHS

of (16b) and the LHS of (16c). Denoting g = |h̄|, we have a further

simplified problem

(AS CE) min
a∈RN

a
T
1 (18a)

s.t.
√
2|s|max

η
√

PPA

ρ+ 2 |s|max

η
ǫ
T
a ≤ g

T
a (18b)

2|s|max

|s|min+|s|max
‖g ⊙ a‖∞ ≤ g

T
a (18c)

a ∈ {0, 1}N . (18d)

Problem (18) is a zero-one linear program which can be very

difficult to solve. Indeed, it is NP-hard, as shown by the following

proposition.

Proposition 1. The AS CE problem (18) is NP-hard.

Proof. The proof is based on reducing the knapsack problem to (18).

We omit the proof here due to space limit. The proof can be found

in [11].

Since problem (18) is NP-hard, in a large antenna array scenario

one may want to focus on efficient approximations. One intuitive ap-

proach is continuous relaxation and rounding, which means that the

zero-one constraint (18d) is relaxed to a convex set [0, 1]N , resulting

in a convex problem, and the relaxed solution is rounded back to zero

or one. However, this simple approach, as we observe in the simula-

tions, frequently fails to generate even a feasible solution to problem

(18). In the next section, we will propose an efficient approxima-

tion algorithm based on Lagrangian dual and efficient knapsack ap-

proximation, which shows near-optimal performance by numerical

results.

4. PROPOSED LAGRANGIAN DUAL APPROACH

We propose to handle the AS CE problem via the Lagrangian dual.

Let us define a partial Lagrangian function as

L(a, λ) = a
T
1+ λ( 2|s|max

|s|min+|s|max
‖g ⊙ a‖∞ − g

T
a)

= λ 2|s|max

|s|min+|s|max
‖g ⊙ a‖∞ + (1− λg)Ta.

(19)

where λ ≥ 0 is the dual variable associated with constraint (18c).

The dual function, by definition, is

d(λ) = min
a

L(a, λ)

s.t.
√

2|s|max

η
√

PPA

ρ+ 2|s|max

η
ǫ
T
a ≤ g

T
a

a ∈ {0, 1}N .

(20)

The dual problem is

max
λ≥0

d(λ). (21)

The dual problem (21) involves only one optimization variable

which can be easily handled by the bisection method [12]. We omit

the details on the bisection method here as it is straightforward.

However, in each iteration of the bisection method, problem (20)

needs to be solved for the objective value and the solution. Problem

(20) is the focus of the remaining development.

Problem (20) again involves zero-one optimization variables,

which is difficult to deal with in an optimal way. Alternatively, we

rewrite problem (20) as a series of knapsack problems which ex-

hibit efficient approximations. To do this, let us rewrite problem (20)

equivalently as a two-stage minimization problem where the infinity

norm can be easily handled.

min
i=1,...,N





















min
a

λ 2|s|max

|s|min+|s|max
‖g ⊙ a‖∞ + (1− λg)Ta

s.t.
√
2|s|max

η
√

PPA

ρ+ 2|s|max

η
ǫ
T
a ≤ g

T
a

aj = 0, j < i

aj = 1, j = i

aj ∈ {0, 1}, j > i.





















(22)

The above problem can be readily solved by solving the inner min-

imizations for i = 1, . . . , N . Assuming without loss of generality

that g is ordered in nonincreasing order g1 ≥ g2 ≥ . . . ≥ gN , the

inner minimization problem is rewritten as

min
{aj}j>i

(λ 2|s|max

|s|min+|s|max
gi + (1− λgi)) +

∑

j>i

(1− λgj)aj

s.t.
√

2|s|max

η
√

PPA

ρ+ 2|s|max

η
ǫi − gi ≤

∑

j>i

(gj − 2|s|max

η
ǫj)aj

aj ∈ {0, 1}, j > i.
(23)

For convenience of the following development, let us define z =

[aj ]j>i, c = [(1 − λgj)]j>i, b = [gj − 2|s|max

η
ǫj ]j>i, d =

√
2|s|max

η
√

PPA

ρ + 2|s|max

η
ǫi − gi, and L = N − i. Then problem (23)

can be written as
min
z

c
T
z

s.t. d ≤ b
T
z

z ∈ {0, 1}L.

(24)

First, it can be easily seen that if cl ≥ 0 and bl ≤ 0, then the optimal

zl must take zero; similarly, if cl ≤ 0 and bl ≥ 0, then the optimal zl
must take one. Thus, we assume that for all l it holds that cl ≥ 0 and

bl ≥ 0, or cl ≤ 0 and bl ≤ 0. By the change of variable z̃ defined as

z̃l =

{

zl, if cl ≥ 0 and bl ≥ 0,

1− zl, if cl ≤ 0 and bl ≤ 0,
(25)

problem (24) can be rewritten as

min
z̃

|c|T z̃

s.t. d−
∑

cl≤0,bl≤0

bl ≤ |b|T z̃,

z̃ ∈ {0, 1}L.

(26)

Problem (26) is a variant of the knapsack problem, where |cl| and

|bl| represent the weight and value of item l respectively, and d −
∑

cl≤0,bl≤0
bl is the target total value. The goal of problem (26) is

to select the items for minimizing the total weight while ensuring
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the target total value is achieved. To handle problem (26), we use

the classic efficient greedy algorithm by Dantzig [8]. We first order

the variables such that

|b1|
|c1|

≥ |b2|
|c2|

≥ . . . ≥ |bL|
|cL|

. (27)

Eq.(27) means that item l has the lth largest value-weight ratio. The

greedy method is to select from item 1 to L until the total target

value is achieved. Specifically, we first find the smallest index M ∈
{0, . . . , L} such that

d−
∑

cl≤0,bl≤0

bl ≤
M
∑

l=1

|bl|, (28)

and then set the approximate solution a⋆ as

a⋆
l =

{

1, for l ≤M,

0, for l > M.
(29)

The description of the proposed algorithm is complete. We an-

alyze the computational complexity as follows. The approximation

to problem (26) (and thus problem (23)) is dominated by the sorting

operation in (27), which has complexityO(N logN). Problem (22),

which involves handling problem (23) for N times, has complexity

O(N2 logN). Finally, the complexity of the whole algorithm for

problem (21) is O(KN2 logN) where K denotes the number of

iterations of the bisection method.

5. SIMULATION RESULTS

In this section, we use simulations to demonstrate the performance

of the proposed algorithm. The number of transmitting antennas is

N = 128. The channel estimates h̄ are generated following an

i.i.d. circularly-symmetric complex Gaussian distribution with zero

mean and unit variance, and the channel uncertainty upper bound ǫ is

elementwise uniform i.i.d. distributed on [0, 0.2]. The constellation

S is 16-QAM. The per-antenna power is PPA = 0.1. The results

are averaged over 104 realizations. We use the beamforming power

minimization problem1 as a benchmark.

Fig. 1 presents the total transmission power of the proposed AS

CE and beamforming. In the figure, AS CE - lower bound denotes

the objective value obtained by relaxing problem (18) continuously,

which forms a performance lower bound of AS CE. We can see that

the performance of the proposed AS CE method is almost the same

as the lower bound, suggesting that the proposed algorithm yields

near-optimal solution to the power minimization problem for AS CE.

It can be further observed that beamforming is better than AS CE; the

power gap ranges from 3.5dB at bo = 10−8 to 4.6dB at bo = 10−2.

But it should be noted that this advantage of beamforming comes at

prices of higher PAPR, higher costs, and lower power efficiency of

the power amplifiers.

Table 1 shows the average number of active antennas. It can

be seen that beamforming activates 103 antennas on average irre-

spective of bo. In contrast, AS CE uses much fewer antennas. The

number of active antennas ranges from 24.7 at bo = 10−2 to 68.2

1In the power minimization problem, we minimize the transmission
power subject to the constraint that the worst-case SER is less than bo. Us-
ing the union bound on SER, the problem can be turned to minw∈CN ‖w‖22
subject to constraint |h̄T

w|η − 2|s|maxǫ
T |w| ≥

√
2ρ, where w is the

beamformer. It can be easily seen that this problem has a closed-form solu-
tion. We omit the detail as it is straightforward.

at bo = 10−8, which are only 19 − 53% of total 128 transmitting

antennas. This demonstrates the substantial reduction in the number

of RF chains used in large-scale MIMO systems.

In Table 2, we present the feasibility rates of beamforming,

AS CE by the proposed algorithm, and the previously mentioned

AS CE by continuous relaxation and rounding. It can be seen that

beamforming shows 100% feasibility rate, while AS CE has a slight

degradation when the bo is at a very stringent level of 10−8. This

result is not surprising as AS CE is actually power limited due to

fixed per-antenna power and finite number of transmitting antennas.

When the target bo is very small, AS CE does not have enough

power to support the stringent target bo. It can be further seen that

the simple continuous relaxation and rounding approach to the AS

CE problem, denoted by AS CE - CR & rounding in the table, only

yields a feasibility rate of about 50%, which may not acceptable in

practical applications.
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Fig. 1. Total transmission power.

Target symbol error rate bo

10−8 10−6 10−4 10−2

Beamforming 103.3 103.3 103.3 103.3

AS CE - proposed 68.2 51.7 38.0 24.7

Table 1. Average number of active antennas.

Target symbol error rate bo

10−8 10−6 10−4 10−2

Beamforming 1 1 1 1

AS CE - proposed 0.923 1 1 1

AS CE - CR & rounding 0.463 0.506 0.507 0.502

Table 2. Feasibility rates

6. CONCLUSION

In this paper, we formulated a robust power minimization problem

for CE precoding with AS. We showed the NP-hardness of the for-

mulated optimization problem and proposed an efficient approxima-

tion algorithm based on Lagrangian dual relaxation and greedy knap-

sack approximation. Simulations showed promising results with the

proposed algorithm.
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